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Abstract 

One of the most significant discoveries in the annals of mathematical history is Schauder's fixed-point 

theorem, which is generally recognized to be among the most important discoveries. The fact that the 

Brüwer fixed point hypothesis cannot be used in dimensions of space that are infinitely large is one of 

the most important discoveries in the history of mathematics. The facts that have been supplied make it 

feasible to claim that the great majority of them are of a topological nature. In 2019, N. Manav and D. 

Turkoglu introduced a new class of generalized metric space called modular F metric space as a 

generalization of metric space. It is generally agreed upon that this is one of the most significant 

discoveries that has been made in the subject of mathematics that has ever been produced. In this article, 

we study the basic structure of modular F-metric spaces and the concept of an equivalent relationship 

between modular F metric space and modular F metric bounded space. Moreover, we study the fixed 

point theorem (New version of Banach Contraction Principle) over modular F metric spaces. This is 

something that one would be able to predict occurring given the circumstances that are present. These 

results extend, broaden, and integrate many previously published results. 

 

Keywords: F-metric space, fixed point, modular F-metric spaces, Banach contraction principle 

 

1. Introduction 

M. Frechet's 1906 introduction of the concept of an abstract metric space serves as a unifying 

idealization for a wide variety of mathematical, physical, and other scientific constructions that include 

the concept of distance. The concept of a metric space is important in various scientific disciplines. Due 

to the characteristics of the mathematical sciences, many efforts have been made to extend the metric 

setup by modifying some metric space axioms. Thus, many new kinds of spaces were developed, and 

many metric discoveries were extended to new contexts, such as modular b-metric spaces, symmetric 

spaces, fuzzy metric spaces, vector metric spaces, S-metric spaces, b-metric spaces, dislocated b -metric 

spaces, etc.  

As an extension of the idea of metric space, Jelli and Samet developed a new concept called ℱ -metric 

space. Various authors have recently concentrated their attention on ℱ-metric spaces and their 

properties. N. Manav and D. Turkoglu introduced a new class of generalized metric space called 

modular  ℱ -metric space as a generalization of metric space. We begin by defining and illustrating the 

necessary concepts and results in metric spaces, since this will be useful throughout the study. Next, we 

establish an equivalent relationship between modular  ℱ-metric space and modular ℱ-matric bounded 
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space. Finally, we establish a fixed point theorem for modular ℱ-metric spaces that needs just one 

similar inequality on the basis of Huang, Deng, and Radenovic's findings for b-metric spaces. 

 

2. Basic Structure of Modular F-Metric Spaces 

The importance of this theory is wide-ranging because it can deal with a broad class of mathematical 

disciplines. For pure mathematics in general, effort is mainly focused on developing and refining some 

appropriate criteria many that are able to be used to establish the existence and uniqueness results for 

very many special types of problems. However, with applied mathematics, concentration will be given 

to how these solutions are computed. LetY ≠ 𝜙, 𝑢: (0,∞) × 𝑌 × 𝑌 ⟶ [0,∞]. we denote 𝑢𝐴(𝑧, 𝑤):=

𝑢(𝐴, 𝑧, 𝑤) for all 𝐴 > 0, 𝑧, 𝑤 ∈ 𝑌 so that 𝑢 = {𝑢𝐴}𝐴>0 where𝑢𝐴: 𝑌 × 𝑌 ⟶ [0,∞]. Then 𝑢 is said to be a 

modular on 𝑌 if it satisfies the following properties: (a) 𝑧 = 𝑤   𝑢𝐴(𝑧, 𝑤) = 0, for all 𝐴 > 0; (b) 

𝑢𝐴(𝑧, 𝑤) = 𝑢𝐴(𝑤, 𝑧), for all 𝐴 > 0, and 𝑧, 𝑤 ∈ 𝑌(c) 𝑢𝐴+𝐵(𝑧, 𝑤) ≤ 𝑢𝐴(𝑧, 𝑠) + 𝑢𝐵(𝑠, 𝑤), for all 𝐴, 𝐵 > 0 

and 𝑧, 𝑤, 𝑠 ∈ 𝑌. In this part, we will review some essential concepts and findings. The following notation 

was given by Jleli and Samet B. Assume that F is a collection of functions 𝑔: (0, +∞) → ℝ  that fulfill 

the following conditions: (ℱ1)     0 < 𝑠 < 𝑡 ⟹ 𝑔(𝑠) ≤ 𝑔(𝑡).(ℱ2) We have, for each sequence  {𝑢𝑛} ⊂

(0, +∞), lim
𝑛→+∞

 𝑢𝑛 = 0 ⟺ lim
𝑛→+∞

 𝑔(𝑢𝑛) = −∞. The conditions that were described earlier are the 

consequences of the fixed point analysis, and these are the situations that supply the circumstances in 

which the solutions in this instance map make their appearance. As follows, we extend the notion of 

metric spaces. Let Y be a non - empty set and (h, β ) ∈ F × [0,∞). Assume that B : Y× Y →

 [0,∞)(𝑅) be a  function  such that (D1) for all (r, s) ∈ Y× Y ,    B(r, s) = 0  iff   r = 𝑠 (D2)     B(r, s) = 

B(s, r) , for all (r, s) ∈ Y× Y  (D3) for every (r, s) ∈ Y× Y , for each M∈ ℕ , M ≥ 2 and for every  { 𝑠𝑗 }⊂ 

Y, j= 1,2, ... M. with ( 𝑠1  , 𝑠𝑀  ) = ( r , s )  , we have B(r, s)  >  0 implies     h(B(r, s)) ≤ h ( 

∑ BM−1
J=1 (sj , sJ+1   )    +   β. Then B is referred to as a function weighted metric or ℱ -metric, while the 

pair (Y, B) is referred to as a function weighted metric space or F-metric space. In addition to this 

particular setting, it is of the utmost importance to acknowledge the relevance of these answers in other 

situations.  

Examples on F-metric spaces: 

The purpose of this section is to offer an example of what we already know about the fixed point 

theorem, in addition to giving some additional information.  Let Y = ℕ  and 

 B: Y× Y →  (0, ∞) be defined by   B(u, v) = {
|u − v|     if (u, v) ∉ [0, 3] × [0, 3]

(u − v)2    if (u, v) ∈ [0, 3] × [0, 3]
 

for all (u, v) ∈ Y× Y. Then B is an F-metric on Y. Keeping in mind that it provides an explanation of the 

circumstances under which the solutions in this instance map, which is advantageous in other situations 

in addition to this one, it helps to guarantee that this is relevant in other scenarios. Let Y = [1, 4] and 

define a mapping B: Y× Y → ℝ  by  

        B(u, v) = 

{
 
 

 
 

u + v,    when u ≠ v and u, v ∈ [1, 2];
2(u + v),     when u ≠ v and u, v ∈ [2, 3];
3(u + v),      when u ≠ v and u, v ∈ [3, 4];

0  ,                    when  u = v
1  ,                       otherwise

 

Then (Y, B) is an F-metric space with  h(u)= −
1

𝑢
  and  β = 2. The fixed point theorem with three points, 

which is also known as the discrete fixed point system, is used in order to accomplish the goal of 
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producing the results. This system is sometimes referred to by the discrete fixed-point system. Let (Y, d) 

be a sequentially compact F -metric space and H be a self-map on Y such that g(d(Hx, Hy)) < g(d(x, y)) 

for all x,y ∈ Y with x ≠ y, where g is an altering distance function. Also, suppose that the F -metric d is 

continuous. Then H has a unique fixed point and for any x∈Y, the sequence (𝐻𝑚x) is F -convergent to 

that fixed point. An example of a mathematical theory that asserts that there can be only one fixed point 

in a topological space is the fixed point theorem, which is also sometimes referred to as the topological 

fixed point theorem. It is possible to refer to this theorem as the topological fixed-point theorem under 

certain situations. Let (Y, d) be a sequentially compact F -metric space and H be a self-map on Y such 

that d(Hx, Hy) < d(x, y) for all x,y ∈ Y with x ≠ y, where g is an altering distance function. Then H has 

a unique fixed point in X and for any x∈Y, sequence (𝐻𝑚x) converges to that fixed point. Let (Y, B) be 

an F-metric space. Additionally, an overview of the advancement of the theory is provided in this 

section. In addition, a full examination of the phenomena is presented in this part. A sequence {𝑢𝑛  }⊂ 𝑌 

is said to be F-converge to a point 𝑢0 ∈ 𝑌 if lim
𝑛→∞

 B(𝑢𝑛 , 𝑢0) = 0. Furthermore, it offers a comprehensive 

examination of the phenomena that are being addressed in the course of the discussion. An F-metric 

space (Y, B) is said to be F-complete if any F-Cauchy sequence F- converges in this space. The idea of 

fixed points in infinite-dimensional space was introduced and given the chance to test it, prove it, or 

dispute it. A function g: [0,1)→[0,1) is called an altering distance function if (i) g is continuous, (ii) g is 

non-decreasing, (iii) g(s) = 0  iff  s= 0. Let (Y, B) be a F-metric space. A sequence {𝑢𝑛  }⊂ 𝑌 such that 

for all  ∈ > 0  there exist  M ∈ ℕ for all  i, j ∈ ℕ:  i, j > M implies  B(𝑢𝑖 ,𝑢𝑗)  <  ∈  is called a F- Cauchy 

sequence. There is a clear connection between this approach and the theory of fixed points as well. 

Taking this method is something that may be used in both theoretical and practical contexts. Through the 

use of this method, it is possible to recognize a broad variety of different potential solutions to the issue 

that is now being faced. Let Y = ℕ  and B: Y× Y →  (0, ∞) be defined by B (u, v) = {𝑒
|𝑢−𝑣| 𝑤ℎ𝑒𝑛 𝑢 ≠ 𝑣
  0  𝑤ℎ𝑒𝑛    𝑢 = 𝑣 

  

for all (u, v) ∈ Y× Y. Then B is an F-metric on Y. There are certain circumstances in which there is only 

one feasible solution to a problem that has been discovered. Roth presented a research article on fixed 

point theory for non-self-maps. This was one of the many assertions that the fixed point theorem makes. 

The study that was conducted resulted in the establishment of a precedent, and it is this precedent that is 

still being used in the area to this day. We begin by defining modular ℱ -metric as a more extended form 

of the terms metric, modular metric, and ℱ -metric. Let Y ≠ 𝜙 and 𝐷𝐴: (0,∞) × 𝑌 × 𝑌 → [0,∞] be a 

function. If  ∃ (𝑔, 𝛼1) ∈ ℱ × 𝑅  s. t. (𝐹𝜆1)  𝐷𝐴(𝑟, 𝑠) = 0 ⟺ 𝑟 = 𝑠, for all (𝑟, 𝑠) ∈ 𝑌 × 𝑌; (𝐹𝜆2) 

 𝐷𝐴(𝑟, 𝑠) = 𝐷𝐴(𝑠, 𝑟) for all (𝑟, 𝑠) ∈ 𝑌 × 𝑌; (𝐹𝜆3)  For all (𝑟, 𝑠) ∈ 𝑌 × 𝑌, 𝑝 ∈ ℕ with 𝑝 ≥ 2 and for all 

(𝑣𝑖)𝑖=1
𝑝 ⊂ 𝑌 with (𝑣1, 𝑣𝑝) = (𝑟, 𝑠), we have; 

𝐷𝐴(𝑟, 𝑠) > 0 implies 𝑔(𝐷𝐴(𝑟, 𝑠)) ≤ 𝑔(∑  

𝑝−1

𝑗=1

 𝐷𝐴
𝑗
(𝑣𝑗 , 𝑣𝑗+1)) + 𝛼1 

then 𝐷𝐴 is called an modular ℱ -metric on 𝑌. The pair (𝑌, 𝐷𝐴) is called an modular ℱ -metric space. 

Optimal approximants have been demonstrated to exist in modular function spaces, as demonstrated by 

Wojciech M. Kozlowski. It is through the use of sub lattices, which are elements, that is accomplished. 

Not only can modular function spaces demonstrate the intrinsic generalization of Lp, which can be 

described as the situation in which p is greater than nothing, but they also have the ability to depict the 

Orlicz, Lorentz, and Kothe spaces. For the purpose of indicating a pseudo modular, the symbol ϱ is 
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employed, whereas the modular function space that is associated with it is symbolized by the sign Lϱ. A 

sub lattice of the letter Lϱ is represented by the letter C, which is another point of interest. Given that f is 

an aspect of the class Lϱ, the purpose of this study is to undertake an analysis of the minimization 

problem. This includes identifying an element h in C such that the infimum of ϱ(f − h) is equal to the 

infimum of ϱ(f − g) for all g in C. The primary objective of this study is to determine the optimal 

solution to the minimization problem. This is the term that is utilized whenever the term is being 

utilized. Consider the space (𝑌, 𝐷𝐴) to be a modular ℱ -metric space. Then {𝑢𝑛}𝑛∈ℕ is modular ℱ -

convergent to 𝑢  ⟺ 𝐷𝐴(𝑢𝑛, 𝑢) → 0 as 𝑛 → ∞. Further consider the space (𝑌, 𝐷𝐴) to be a modular ℱ -

metric space and {𝑢𝑛}𝑛∈ℕ be a sequence in 𝑌. Then 

                           (𝑢, 𝑣) ∈ 𝑌 × 𝑌, lim
𝑛→∞

 𝐷𝐴(𝑢𝑛, 𝑢) = lim
𝑛→∞

 𝐷𝐴(𝑢𝑛, 𝑣) = 0 ⟹ 𝑢 = 𝑣. 

The obstacles that are connected with the process of obtaining optimal approximants are a large focus of 

study in two areas of study approximate theory and probability theory. Both of these fields of study 

place a significant emphasis on the challenges. A close connection exists between the process of 

discovering optimal approximants and the problem of nonlinear prediction when C is Lϱ(B) for a σ-sub 

algebra B of the original σ-algebra. The occurrence of this phenomenon occurs in situations when C is 

Lϱ(B). Now, let us define modular ℱ -Cauchy sequence, then completeness definition and conditions for 

modular ℱ metric space. Let (𝑋, 𝐹𝜆) be a modular ℱ -metric space. Let {𝑥𝑛} ⊂ 𝑋 be a sequence in𝑋. (i) 

We say that {𝑥𝑛} ⊂ 𝑋 is modular ℱ -Cauchy, if lim𝑛,𝑚→∞  𝐹𝜆(𝑥𝑛, 𝑥𝑚) = 0. (ii) We say that (𝑋, 𝐹𝜆) 

modular ℱ -complete, if every modular ℱ -Cauchy sequence is modular ℱ -convergent to a certain 

element in𝑋. Using a computer-based iterative technique to find the fixed point of a contractive map in 

order to get at the appropriate solution via the use of an iterative strategy is not only a possibility, but it 

is also a highly possible prospect. Specifically, this is due to the fact that the implementation of an 

iterative technique is a highly viable possibility. In addition, because of this, there is a probability that it 

will prove to be very helpful in the long term. Let (𝑋, 𝐹𝜆) be a modular ℱ -metric space. If {𝑥𝑛} ⊂ 𝑋 is 

modular ℱ -convergent, then it is modular ℱ - Cauchy. The definition of modular ℱ -compact set is 

giving more details about the topology on modular ℱ -metric space.Let (𝑋, 𝐹𝜆) be a modular ℱ -metric 

space. Let 𝐶 ⊂ 𝑋 be a nonempty subset. We say that 𝐶 is modular ℱ -compact if 𝐶 is compact with 

respect to the topology 𝜏𝐹𝜆  on𝑋. Moreover let (𝑋, 𝐹𝜆) be a modular ℱ -metric space. This is a result that 

may be attributed to the fact that it took place. As far as I am concerned, this is something that needs to 

be taken into consideration in relation to the circumstance. In addition to being portable and able to be 

moved about with a fair amount of convenience, let 𝐶 be a nonempty subset of 𝑋 then, the following 

statements are equivalent: (i) 𝐶 is modular ℱ -compact. (ii) For any sequence {𝑥𝑛} ⊂ 𝐶 there exist a 

subsequence {𝑥𝑛𝑘} ⊂ {𝑥𝑛} and 𝑥 ∈ 𝐴 such that lim
𝑘→∞

 𝐹𝜆(𝑥𝑛𝑘 , 𝑥) = 0. Let (𝑋, 𝐹𝜆) be a modular ℱ -metric 

space. Let 𝐶 ⊂ 𝑋 be a nonempty subset. The subset 𝐶 is called modular sequentially ℱ -compact, if for 

any sequence{𝑥𝑛} ⊂ 𝐶, there exist a subsequence {𝑥𝑛𝑘} ⊂ {𝑥𝑛} and 𝑥 ∈ 𝐶 such that lim
𝑘→∞

 𝐹𝜆(𝑥𝑛𝑘 , 𝑥) = 0. 

consequently, it will be feasible to achieve the level of precision that is required in this situation. When 

seen from this perspective, it is possible to carry out such an action. In the event that all of the factors 

that have been taken into consideration are taken into account, there is a possibility that this may end up 

occurring. Further let (𝑋, 𝐹𝜆) be a modular ℱ -metric space. Let 𝐶 ⊂ 𝑋 be a nonempty subset. The subset 

𝐶 is called modular ℱ -totally bounded, if for any 𝑟 > 0 there exists a sequence (𝑥𝑗), 𝑗 = 1,2, … , 𝑛 ⊂ 𝐶 

such that 𝐶 ⊂ ⋃𝐵𝐹𝜆(𝑥𝑗 , 𝑟). Let (𝑋, 𝐹𝜆) be a modular ℱ -metric space. Let 𝐶 ⊂ 𝑋 be a nonempty subset. 
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Then (i) 𝐶 is modular ℱ -compact ⟺ 𝐶 is modular sequentially ℱ -compact. (ii) 𝐶 is modular ℱ -

compact ⇒ 𝐶 is modular ℱ -totally bounded.  

 

3. Fixed Point Theorem (New version of Banach Contraction Principle) over Modular F Metric 

Spaces 

The study by Filipović and Kukić demonstrated the existence of new theorems. Theorems are 

established by including additional conditions essential for their proof; let T be a self-mapping on 

complete b-metric space (𝑋,,𝑠≥1) satisfying. It seems like it would be acceptable considering what kind 

of event occurred just recently. We have not done so, supposing that b-metric measurements are 

continuous  

𝑑𝑏(𝑇𝜒,𝑇𝜁)≤𝜆𝑑𝑏(𝜒,𝜁)+𝜇𝑑𝑏(𝜒,𝑇𝜒)+𝛿𝑑𝑏(𝜁,𝑇𝜁),db(Tχ,Tζ)≤λdb(χ,ζ)+μdb(χ,Tχ)+δdb(ζ,Tζ), 

Subsequently, we shall just provide the formulations of those theorems, while the proofs may be found. 

This will be consistent moving forward. for all 𝜒,𝜁∈𝑋χ,ζ∈X, where 𝜆,𝜇,𝛿≥0λ,μ,δ≥0 with 

𝜆+𝜇+𝛿<1λ+μ+δ<1 and 𝛿<1𝑠.δ<1s. Then there is a unique fixed point of T. While Filipović and Kukić 

have argued this, we are facing with theorems which are very new.’ Awareness of this was expressed by 

the subjected once he became actively involved in dealing with how to get information to solve certain 

task. Let (𝑋,≥1)(X,db,s≥1) be a complete b-metric space and 𝑇:𝑋→𝑋T:X→X be a mapping such that we 

did not give some other conditions for understanding those theorems because we think that b-metric 

measurements are continuous. 

𝑑𝑏(𝑇𝜒,𝑇𝜁)≤𝑎1𝑑𝑏(𝜒,𝜁)+𝑎2𝑑𝑏(𝜒,𝑇𝜒)+𝑎3𝑑𝑏(𝜁,𝑇𝜁)+𝑎4𝑑𝑏(𝜒,𝑇𝜁)+𝑎5𝑑𝑏(𝜁,𝑇𝜒),db(Tχ,Tζ)≤a1db(χ,ζ)+a2db(χ

,Tχ)+a3db(ζ,Tζ)+a4db(χ,Tζ)+a5db(ζ,Tχ),  But it is a condition which must have been given more other 

conditions. it is a direct result of her present conditioned state that we did not give some other 

conditions. Consider all the values 𝜒,𝜁∈𝑋χ, ζ∈X, 𝑎1,𝑎2,𝑎3,𝑎4,𝑎5≥0 such that 𝑎1+𝑎2+𝑎3+s(𝑎4+𝑎5)<1 

and for all χ, ζ ∈ X , χ < ζ , a1 + a2 + a3 + s( a4 + a5) < 1 and ai > 1 − 2s.This indicated difficulty that 

was caused from there. We faced with releases these leads so far and he loses awareness of existence 

about these leading at all. There exist 𝛾 = α − β and δ > 0 such that if |γ| < δ then T has no fixed point. It 

was very important to use them for reaching them so far since he used. He can be particularly released 

those leading from all mention clearly. So, now stays only realization of formulation of those theorem as 

well as brief explanation of proving those statements. Let 𝑌 be a nonempty set and 𝐷𝐴: (0, +∞) × 𝑌 ×

𝑌 → 𝑅 be a mapping that satisfies (ℱ1) and (ℱ2) with respect to(𝑔, 𝛼) ∈ ℱ × 𝑅, than we say that (𝑌, 𝐷𝐴) 

is modular ℱ -metric bounded space, if there is a metric 𝐶𝐵 on 𝑌 s. t  

(𝑥, 𝑦) ∈ 𝑌 × 𝑌,𝐷𝐴(𝑥, 𝑦) > 0 implies 𝑔(𝐶𝐵(𝑥, 𝑦)) ≤ 𝑔(𝐷𝐴(𝑥, 𝑦)) ≤ 𝑔(𝐶𝐵(𝑥, 𝑦)) + 𝛼  (3.1) 

Now, we are prepared to present and demonstrate our primary findings. If we have modular ℱ -metric 

with (𝑓, 𝛼), then we have bounded modular ℱ -metric with (𝑓, 𝛼) as below: Let 𝑌 be a nonempty set, 

and let 𝐹𝜆: (0, +∞) × 𝑌 × 𝑌 → 𝑅 be a given mapping satisfying (𝐹𝜆1) and (𝐹𝜆2). Let (𝑔, 𝛼1) ∈ ℱ × 𝑅 

and suppose that 𝑔 is continuous from the right. Then the following statements are equivalent: (i) (𝑌, 𝐹𝜆)  

a modular ℱ -metric on 𝑌 with (𝑔, 𝛼1) defined above. (ii) (𝑌, 𝐹𝜆) Is an modular ℱ -metric bounded on 𝑌 

with respect to (𝑔, 𝛼1). The concept of a metric space has significant relevance across several scientific 

areas.  

Assume that (Y, F λ) is an modular F -metric on Y with respect to (g, α_1). Let us define the mapping 

d_1: Y×Y→R by due to the characteristics of the mathematical sciences, several attempts have been 

undertaken to expand the metric framework by altering certain axioms of metric spaces. d_1 

(z,w)=inf{∑_(i=1)^(M-1)▒  F_(λ/k) (v_i,v_(i+1) ):M∈N,N≥2,(v_i )_(i=1)^M⊂Y,(v_1,v_M )=(z,w)} 
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Multiple efforts have been futile. These endeavors have occurred at various points throughout history. 

For all (z,w)∈Y×Y. We shall prove that d_1 is a metric on Y. Since Fλ (z,z)=0 for all z∈Y, and 

λ∈(0,∞).This resulted in the creation of various new places and the use of unique measurement 

outcomes in novel contexts. Thus   F_(λ/k) (z,z)=0  for all z∈Y, and  λ/k∈(0,∞)   ( Because λ∈(0,∞) 

implies  λ/k∈(0,∞)  )Recently presented notions include modular b-metric spaces It follows from the 

definition of 𝑑1 that 𝑑1(𝑧, 𝑧) = 0,  𝑧 ∈ 𝑌 Evidence shows that many fixed-point theorems have been 

formulated by Liu, Y. for hybrid contractive scenarios. Indeed, a group of people managed to formulate 

these theorems. They were manufactured using the so-called common property, also often referred to as 

E.A. in some contexts. Now, let (𝑧, 𝑤) ∈ 𝑌 × 𝑌 be s. t. 𝑧 ≠ 𝑤. Suppose that 𝑑1(𝑧, 𝑤) = 0. Let𝜀1 > 0, by 

the definition of 𝑑1, ∃  𝑀 ∈ ℕ,𝑀 ≥ 2, and (𝑣𝑖)𝑖=1
𝑀 ⊂ 𝑌 with (𝑢1, 𝑢𝑀) = (𝑧, 𝑤) s. t. The formulation of 

these theorems was accomplished utilizing the so-called common property which constituted their 

material and was its starting point of construction 

                                                  ∑  𝑀−1
𝑖=1 𝐹𝜆

𝑘

(𝑣𝑖, 𝑣𝑖+1) < 𝜀1 

 We obtain 

                                           𝑔 (∑  𝑀−1
𝑖=1  𝐹𝜆

𝑘

(𝑣𝑖, 𝑣𝑖+1)) ≤ 𝑔(𝜀1)                             (3.2) 

For convenience, the following are some additional particulars that need to be taken into consideration. 

Even if this is only one of the many reasons why it is interesting, the fact that it is fascinating for this 

reason is just one of many reasons why it is intriguing. There is a large number of other factors that 

contribute to this. On the other hand, by (𝐹𝜆3), we have 

                                     𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔 (∑  𝑀−1
𝑖=1  𝐹𝜆

𝑘

(𝑣𝑖, 𝑣𝑖+1)) + 𝛼1                   (3.3) 

In the event that all of the factors that have been taken into consideration are taken into account, there is 

a possibility that this may end up occurring. Additionally, it makes it possible to provide a forecast about 

the number of iteration operations that will be required in order to achieve a specific degree of accuracy 

in the findings. The results will be analyzed more closely in paragraphs that follow hereinafter. For this 

person’s opinion, Ali, J., along with his co-workers alone formulated this concept. Using (3.2) and(3.3), 

we obtain 

𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(𝜀1) + 𝛼1,  𝜀1 > 0 

But, using(ℱ2), we have lim
𝜀→0+

 (𝑔(𝜀1) + 𝛼1) = −∞  a contradiction. The application of this concept was 

later extended to probabilistic metric spaces and positive results came into being for both sides related to 

that affair thanks to research encounter during other situations having fulfilling this purpose during 

questions on fixed points has progressively accrued in time such a specifically equipped. Therefore, we 

have 𝑑1(𝑧, 𝑤) > 0 from the definition of 𝑑1 and (𝐹𝜆2), it can be easily seen that𝑑1(𝑧, 𝑤) = 𝑑1(𝑤, 𝑧), for 

all(𝑧, 𝑤) ∈ 𝑌 × 𝑌. In order to check the triangle inequality, let 𝑧, 𝑤 and 𝑥 be three given points in 𝑌, and 

let 𝜌1 > 0. By the definition of 𝑑1, there exist two chains of points 𝑧 = 𝑣1, 𝑣2, ⋯ , 𝑣𝑁 = 𝑤 and 𝑤 =

𝑣𝑁 , 𝑣𝑁+1,⋯ , 𝑣𝑃 = 𝑥  s. t. 

∑  

𝑁−1

𝑖=1

𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1) < 𝑑1(𝑥, 𝑤) + 𝜌1 
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And Also multiplied during time since event particularly indicated above occurred such a specifically 

equipped warehouse has indeed amassed over quite an elapsed time ∑  𝑃−1
𝑖=𝑁 𝐹𝜆

𝑘

(𝑣𝑖, 𝑣𝑖+1) < 𝑑1(𝑤, 𝑧) + 𝜌1  

Adding the above inequalities, we obtain 

𝑑1(𝑧, 𝑥) ≤ ∑  

𝑃−1

𝑖=1

𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1) < 𝑑1(𝑧, 𝑤) + 𝑑1(𝑤, 𝑥) + 2𝜌1,  𝜌1 > 0 

And there is a lot presented literature including many studies where questions concerning fixed points 

have been posed primarily published relating papers concerning subject matter targeted 

Passing to the limit as𝜌1 → 0+, we get 𝑑1(𝑧, 𝑥) ≤ 𝑑1(𝑧, 𝑤) + 𝑑1(𝑤, 𝑥) As consequence, we deduce that 

𝑑1 is a metric on 𝑌. Next, we shall prove that 𝑑1 satisfies (3.1). Let (𝑧, 𝑤) ∈ 𝑌 × 𝑌 be s. t.  𝐹𝜆(𝑧, 𝑤) > 0. 

From the definition of 𝑑1, it is clear that 𝑑1(𝑧, 𝑤) ≤ 𝐹𝜆(𝑧, 𝑤) which implies from (ℱ1) that 

                                 𝑔(𝑑1(𝑧, 𝑤)) ≤ 𝑔(𝐹𝜆(𝑧, 𝑤))                                     (3.4)   

Let𝜀1 > 0. By the definition of 𝑑1, ∃  𝑀 ∈ ℕ,𝑀 ≥ 2, and (𝑣𝑖)𝑖=1
𝑀 ⊂ 𝑌 with intended conduction studies 

everything possible for forming reflective justification where investigated under-going relatively 

different accumulated knowledge on considered relation transformed reformed techniques allowing 

because were essence their administration motivation with best topics easier contact themselves 

characteristics because if mutual relations one investigates wider ensure implementing (𝑣1, 𝑣𝑀) = (𝑧, 𝑤) 

s. t.  

∑  

𝑀−1

𝑖=1

𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1) < 𝑑1(𝑧, 𝑤) + 𝜀1 

By (ℱ1), we obtain 

𝑔(∑  

𝑀−1

𝑖=1

 𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1)) ≤ 𝑔(𝑑1(𝑧, 𝑤) + 𝜀1) 

Although a certain amount of time had previously gone, the development of this demonstration had 

already begun prior to that point. In addition, the researchers documented their findings in a journal that 

was taken into consideration by other academics who were working in the subject at the time. Using 

(𝐹𝜆3) and the above inequality, we get 

𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(𝑑1(𝑧, 𝑤) + 𝜀1) + 𝛼1,  𝜀1 > 0 

It is usual practice to refer to this specific lattice as the power set lattice during conversations. Passing to 

the limit as 𝜀1 → 0+, and using the right continuity of 𝑓, we obtain 

                                        𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(𝑑1(𝑧, 𝑤)) + 𝛼1                            (3.5)     

one implements that entity an study taken structures mathematical category considering when 

developing one develops next thoughts by (3.4) and (3.5), we have 

𝑔(𝑑1(𝑧, 𝑤)) ≤ 𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(𝑑1(𝑧, 𝑤)) + 𝛼1 

Then (3.1) is satisfied and (𝑌, 𝐹𝜆) is ℱ -metric bounded with respect to (𝑔, 𝛼1). Again Suppose that 

(𝑌, 𝐹𝜆) is ℱ -metric bounded with respect to (𝑔, 𝛼1), that is, ∃ a certain metric 𝑑1 on 𝑌 s. t. (3.1) is 

satisfied. Using given various published papers have been writing Lemma download manifolds 

concerned in essence with the same topic compatible mappings Menger spaces that are mutual relations 

and just weakly compatible mappings. 

We have just to prove that 𝐹𝜆 satisfies (𝐹𝜆3). Let (𝑧, 𝑤) ∈ 𝑌 × 𝑌 be s. t. 𝐹𝜆(𝑧, 𝑤) > 0. Let 𝑀 ∈ ℕ,𝑀 ≥

2, and (𝑢𝑖)𝑖=1
𝑀 ⊂ 𝑌 with (𝑣1, 𝑣𝑀) = (𝑧, 𝑤). Since 𝑑1 is a metric on 𝑌 the triangle inequality yields 
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𝑑1(𝑧, 𝑤) ≤ ∑  𝑀−1
𝑖=1 𝑑1(𝑣𝑖, 𝑣𝑖+1)                                               (3.6) 

On the other hand, using (ℱ1) and the fact that 

(𝑢, 𝑣) ∈ 𝑌 × 𝑌, 𝐹𝜆(𝑢, 𝑣) > 0 ⟹ 𝑔(𝑑1(𝑢, 𝑣)) ≤ 𝑔(𝐹𝜆(𝑢, 𝑣)) 

In the process of contraction mapping, there are a variety of distinct mapping modes that are used. 

Throughout the whole of the session, this specific topic was discussed with the highest significance. It 

was in the part that came before this one that a number of fixed-point theorems that are not only 

common but also connected to one another were investigated. We deduce that 

𝑑1(𝑢, 𝑣) ≤ 𝐹𝜆(𝑢, 𝑣),  (𝑢, 𝑣) ∈ 𝑌 × 𝑌 

⤇           𝑑1(𝑢, 𝑣) ≤ 𝐹𝜆
𝑘

(𝑢, 𝑣),  (𝑢, 𝑣) ∈ 𝑌 × 𝑌                     (3.7) 

Since its inception, fixed-point theory has been put to use in a wide variety of applications that span a 

variety of professional domains. In light of the fact that we are using the fixed point hypothesis as an 

example, we will talk about the basic notions that are associated with fixed point theory, as well as the 

historical context. By (3.6) and (3.7), we obtain 

𝑑1(𝑧, 𝑤) ≤ ∑  

𝑀−1

𝑖=1

𝐹𝜆
𝑘

(𝑣𝑖 , 𝑣𝑖+1) 

which implies by (ℱ1) that 

𝑔(𝑑1(𝑧, 𝑤)) + 𝛼1 ≤ 𝑔(∑  

𝑀−1

𝑖=1

 𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1)) + 𝛼1 

Using the above inequality and the fact that 

𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(𝑑1(𝑧, 𝑤)) + 𝛼1 

The use of this idea continues to remain prevalent in spite of the passage of time. It is commonly 

accepted that the Banach principle is one of the most fundamental concepts in the subject of functional 

analysis, and it is also usually recognized as one of the most significant principles in the whole of 

mathematics. This is a consensus that is shared by the majority of analysts. We deduce that 

𝑔(𝐹𝜆(𝑧, 𝑤)) ≤ 𝑔(∑  

𝑀−1

𝑖=1

 𝐹𝜆
𝑘

(𝑣𝑖, 𝑣𝑖+1)) + 𝛼1 

Therefore, (𝐹𝜆3) is satisfied and (𝑌, 𝐹𝜆) is an ℱ-metric on𝑌. On the basis of Huang, Deng, and 

Radanovich’s results for b-metric spaces, we develop a fixed point theorem for modular F -metric spaces 

that requires just one comparable inequality further let (𝑌, 𝐷𝐴) be a complete bounded modular  ℱ -

metric space and 𝐿: 𝑌 → 𝑌 be a map and  ∃ 𝐴1, 𝐴2, 𝐴3 ∈ (0,1) s. t.  

𝐷𝐴(𝐿𝑥, 𝐿𝑦) ≤ 𝐴1𝐷𝐴(𝑥, 𝑦) + 𝐴2
𝐷𝐴(𝑥,𝐿𝑦)𝐷𝐴(𝑦,𝐿𝑥)

1+𝐷𝐴(𝑥,𝑦)
+ 𝐴3  

𝐷𝐴(𝑥,𝐿𝑥)𝐷𝐴(𝑥,L𝑦)

1+𝐷𝐴(𝑥,𝑦)
                   (3.8) 

∀𝑥, 𝑦 ∈ 𝑌. Both the proof that Browder provided and the study that Poincare conducted on the subject 

were made accessible. Browder's evidence was made available to the public in the same year. Then, 𝐿 

has a fixed point. Further, if 𝐴1 + 𝐴2 < 1, then it has a unique fixed point. Let 𝑔 ∈ ℱ and 𝛼1 ∈ R such 

that (𝐹𝜆3) is satisfied. By ℱ2, for 𝜀 > 0, ∃  𝛿 > 0 s. t. 0 < 𝑡 < 𝛿 ⇒ 𝑔(𝑡) < 𝑔(𝜀) < 𝑔(𝜀) + 𝛼1 ⇒

𝑔(𝑡) < 𝑔(𝜀) − 𝛼1        (3.9) 

Additional research was carried out, which was then followed by the publishing of his findings at the 

time that he eventually published his findings. Furthermore, the result of this extra study was the proving 
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of Browder's fixed point theorem for geometric objects such as the square and the sphere, in addition to 

other geometric forms. For 𝑥𝑛 = 𝐿𝑥𝑛−1 = 𝐿
𝑛𝑥𝑜, by (1), we have 

  

𝐷𝐴(𝐿𝑥𝑛, 𝐿𝑥𝑛−1) = 𝐷𝐴(𝑥𝑛+1, 𝑥𝑛) ≤ 

𝐴1𝐷𝐴(𝑥𝑛, 𝑥𝑛−1) + 𝐴2
𝐷𝐴(𝑥𝑛, 𝐿𝑥𝑛−1)𝐷𝐴(𝑥𝑛−1, 𝐿𝑥𝑛)

1 + 𝐷𝐴(𝑥𝑛, 𝑥𝑛−1)
+ 𝐴3

𝐷𝐴(𝑥𝑛, 𝐿𝑥𝑛)𝐷𝐴(𝑥𝑛, 𝐿𝑥𝑛−1)

1 + 𝐷𝐴(𝑥𝑛, 𝑥𝑛−1)
 

≤ 𝐴1𝐷𝐴(𝑥𝑛, 𝑥𝑛−1) ≤ ⋯ ≤ 𝐴1
𝑛𝐷𝐴(𝑥1, 𝑥0) 

There is a possibility that this will take place when it is established that the system has fixed points. As a 

consequence of this, activities such as these are carried out in order to arrive at conclusions on the fixed 

points of the system. To be more specific, Park and Sadovski were the ones who first developed this 

mapping technique, and they were also the ones who made modifications to it after it was established. 

Thus we have 

∑  𝑚−1
𝑖=𝑛 𝐷𝐴(𝑥𝑖, 𝑥𝑖+1) ≤

𝐴1
𝑛

1−𝐴1
𝐷𝐴(𝑥0, 𝑥1),  𝑚 > 𝑛           (3.10) 

                       Also    lim
𝑛→∞

 
𝐴1
𝑛

1−𝐴1
𝐷𝐴(𝑥0, 𝑥1) = 0  

  ∃ an 𝑀 ∈ ℕ s. t. 

0 ≤
𝐴1
𝑛

1−𝐴1
𝐷𝐴(𝑥0, 𝑥1) ≤ 𝛿,  𝑛 ≥ 𝑀                               (3.11) 

When everything is taken into consideration, the work that Mann and Ishikawa have done laid the 

groundwork for an entirely new area of research on fixed point theory. The use of progressive 

approximations to demonstrate that there exist solutions and that those solutions are unique, particularly 

for differential equations, was the impetus for the development of progressive approximations. We have 

𝑔(∑  

𝑚−1

𝑗=𝑛

 𝐷𝐴
𝑗
(𝑥𝑗 , 𝑥𝑗+1)) ≤ 𝑔 (

𝐴1
𝑛

1 − 𝐴1
𝐷𝐴(𝑥0, 𝑥1)) ≤ 𝑔(𝜀) − 𝛼1,  𝑚 > 𝑛 ≥ 𝑀 

Using (𝐹𝜆3) we have for   𝐷𝐴(𝑥𝑛, 𝑥𝑚) > 0,𝑚 > 𝑛 ≥ 𝑀 

𝑔(𝐷𝐴(𝑥𝑛, 𝑥𝑚)) ≤ 𝑔(∑  

𝑚−1

𝑗=𝑛

 𝐷𝐴
𝑗
(𝑥𝑗 , 𝑥𝑗+1)) + 𝛼1 < 𝑔(𝜀) 

It was of the highest importance to keep this in mind because for the goal of illustrating how the 

responses were unique and different from those that had been offered in the past, it was necessary to 

keep this in mind. Although its origins can be traced back to the latter part of the nineteenth century, the 

foundations of this system were built via the use of progressive approximations. So we get   

𝐷𝐴(𝑥𝑛, 𝑥𝑚) < 𝜀 for 𝑛 > 𝑚 ≥ 𝑀. Thus the sequence {𝑥𝑛} is modular  ℱ -Cauchy, and since  𝑌 is 

modular ℱ -complete, therefore {𝑥𝑛} is modular  ℱ -convergent. The conditions that were described 

earlier are the consequences of the fixed point analysis, and these are the situations that supply the 

circumstances in which the solutions in this instance map make their appearance.  So  ∃ 𝑥∗ ∈ 𝑌 s. t. 

lim𝑛→∞  𝑥𝑛 = 𝑥∗. Assume that 𝐷𝐴(𝐿𝑥
∗, 𝑥∗) > 0 then 

𝑔(𝐷𝐴(𝐿𝑥
∗, 𝑥∗)) ≤ 𝑔 (𝐷𝐴(𝐿𝑥

∗, 𝐿𝑥𝑛) + 𝐷𝐴
2

(𝐿𝑥𝑛, 𝑥
∗)) + 𝛼1 

There are many instances of these particular courses. In addition to the topic that we have just covered, 

there are a great many additional disciplines that serve the same role. To put it another way, these are 
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only a few examples out of a far larger number of others that have occurred. In addition to this particular 

setting, it is of the utmost importance to acknowledge the relevance of these answers in other situations. 

we have 

𝑔(𝐷𝐴(𝐿𝑥
∗, 𝑥∗)) ≤ 𝑔 (𝐴1 𝐷𝐴(𝑥𝑛, 𝑥

∗) + 𝐴2
𝐷𝐴(𝑥

∗, 𝐿𝑥𝑛)𝐷𝐴(𝑥𝑛, 𝐿𝑥
∗)

1 + 𝐷𝐴(𝑥𝑛, 𝑥∗)
+

𝐴3
𝐷𝐴(𝑥

∗, 𝐿𝑥∗)𝐷𝐴(𝑥
∗, 𝐿𝑥𝑛)

1 + 𝐷𝐴(𝑥𝑛, 𝑥∗)
+ 𝐷𝐴

2

(𝐿𝑥𝑛, 𝑥
∗)) + 𝛼1

 

For applications where we have to determine if there exists a solution in an equation, specifically the 

adaptive technique problem, it may be represented as a fixed-point problem. One of the more effective 

and powerful ways to use the fixed point theorems is by studying about metric spaces having varying 

metrics, but using some efficient methods we can get rid of such problems. It is one of the more 

effective and powerful ways. Since lim𝑛→∞  𝐷𝐴(𝑥𝑛, 𝑥
∗) = 0 and 𝐿𝑥𝑛 = 𝑥𝑛+1 we get 

lim
𝑛→∞

 𝑔 (𝐴1𝐷𝐴(𝑥𝑛, 𝑥
∗) + 𝐴2

𝐷𝐴(𝑥
∗, 𝐿𝑥𝑛)𝐷𝐴(𝑥𝑛, 𝐿𝑥

∗)

1 + 𝐷𝐴(𝑥𝑛, 𝑥∗)
+

𝐴3
𝐷𝐴(𝑥

∗, 𝐿𝑥∗)𝐷𝐴(𝑥
∗, 𝐿𝑥𝑛)

1 + 𝐷𝐴(𝑥𝑛, 𝑥∗)
+ 𝐷𝐴

2

(𝐿𝑥𝑛, 𝑥
∗)) + 𝛼1 = −∞

 

and Keeping in mind that it provides an explanation of the circumstances under which the solutions in 

this instance map, which is advantageous in other situations in addition to this one. Thus 𝐷𝐴(𝑥
∗, 𝐿𝑥∗) =

0 which implies𝑥∗ = 𝐿𝑥∗, meaning that 𝑥∗ is a fixed point of L. Further suppose that ∃ 𝑦∗, 𝑥∗ ∈ Y   s. t.  

𝐿𝑦∗ = 𝑦∗ and 𝐿𝑥∗ = 𝑥∗. We have 

𝐷𝐴(𝐿𝑥
∗, 𝐿𝑦∗) = 𝐷𝐴(𝑥

∗, 𝑦∗) ≤ 𝐴1𝐷𝐴(𝑥
∗, 𝑦∗) + 𝐴2

𝐷𝐴(𝑥
∗, 𝐿𝑦∗)𝐷𝐴(𝑦

∗, 𝐿𝑥∗)

1 + 𝐷𝐴(𝑥∗, 𝑦∗)
+

+𝐴3
𝐷𝐴(𝑥

∗, 𝐿𝑥∗)𝐷𝐴(𝑥
∗, 𝐿𝑦∗)

1 + 𝐷𝐴(𝑥∗, 𝑦∗)

 

and after the transformation of the fixed point of an ordered set into itself, this continues to be the case 

even after the transformation has been completed. T 

he transformation of the fixed point into itself is a given, which is the reason why this is the issue. so 

𝐷𝐴(𝑥
∗, 𝑦∗) ≤ 𝐴1𝐷𝐴(𝑥

∗, 𝑦∗) + 𝐴2
𝐷𝐴(𝑥

∗, 𝑦∗)𝐷𝐴(𝑦
∗, 𝑥∗)

1 + 𝐷𝐴(𝑥∗, 𝑦∗)
+ 𝐴3

𝐷𝐴(𝑥
∗, 𝑥∗)𝐷𝐴(𝑥

∗, 𝑦∗)

1 + 𝐷𝐴(𝑥∗, 𝑦∗)
 

The argument that is supported by the evidence is supported by this theorem, which gives evidence that 

lends credence to the argument. This assertion is supported by the evidence that is shown in the 

paragraphs that follow: When it is applied to situations that contain metric variables, it is referred to as 

the theorem of fixed points to define the approach used to describe the situation. We have   

𝐷𝐴(𝑥
∗, 𝑦∗) ≤ 𝐷𝐴(𝑥

∗, 𝑦∗) (𝐴1 + 𝐴2
𝐷𝐴(𝑥

∗,𝑦∗)

1+𝐷𝐴(𝑥∗,𝑦∗)
)                                (3.12) 

Assume that  𝐴1 + 𝐴2
𝐷𝐴(𝑥

∗,𝑦∗)

1+𝐷𝐴(𝑥∗,𝑦∗)
≥ 1 we have 

𝐴1 − 1 ≥ (1 − 𝐴1 − 𝐴2)𝐷𝐴(𝑥
∗, 𝑦∗)                                                     (3.13) 

Every single one of the authors who have shown this theorem has offered their very own one-of-a-kind 

proof that is completely unique in order to differentiate themselves from the other authors who have 

demonstrated it.  we have  𝐷𝐴(𝑥
∗, 𝑦∗) = 0. The only way to ensure that such an object does in fact exist 

is via the use of this particular approach. The development of this theorem was undertaken with the 
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intention of investigating the existence of things that have goals that are able to be understood without a 

doubt. Thus 𝑥∗ is the unique fixed point of 𝐿. This is due to the fact that it may be used to demonstrate 

that there exist solutions that are finite for functional equations. 

 

4. Conclusion  

In 2019, N. Manav and D. Turkoglu introduced a novel category of generalized metric space known as 

modular F metric space, which serves as a generalization of conventional metric space. This is a 

significant discovery in the history of mathematics. The Brüwer fixed point hypothesis is inapplicable in 

non-indefinitely vast spatial dimensions. Owing to the importance of the results, it is generally 

recognized as one of the most pivotal discoveries in mathematics. This article explores the innovative 

concept of a parallel relationship between modular F metric spaces and modular F metric bounded 

spaces. we study the basic structure of modular F-metric spaces. Additionally, we investigate the fixed 

point theorem in the framework of modular F metric spaces. These findings augment, refine, and unify 

many previously reported results. This occurrence may be predicted based on the current circumstances.  

 

References: 

1. Beraž A, Garai H, Damjanović B, Chanda A. Some interesting results on F-metric spaces. Filomat. 

2019;33(10):3257-68. 

2. Alnaser, Laila & Ahmad, Jamshaid & Lateef, Durdana & Tarad, Hoda. (2019). Relation theoretic 

contraction results in F-metric spaces. 

3. Asif, A.; Nazam, M.; Arshad, M.; Kim, S.O. F -Metric, F-Contraction and Common Fixed-Point 

Theorems with Applications. Mathematics 2019, 7, 586. 

4. J. Ahmad, A. Al-Rawashdeh, A. Azam, Fixed point results for {α, ξ}-expansive locally contractive 

mappings, J. Inequal. Appl., 2014 (2014), 10 pages.  

5. A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 

693–702. 1.8 

6. Filipovic, M.G.; Kukic, K. Some results about contraction principles in bMS and RbMS without 

assumption of b-metric continuity. Fixed Point Theory 2019, submitted. 

7. M. Berzig, Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point 

theorem, Appl. Math. Lett., 25 (2012), 1638–1643. 

8. A. Al-Rawashdeh, J. Ahmad, Common Fixed Point Theorems for JS- Contractions, Bull. Math. 

Anal. Appl., 8 (2016), 12–22. 

9. Z. Aslam, J. Ahmad, N. Sultana, New common fixed point theorems for cyclic compatible 

contractions, J. Math. Anal., 8 (2017), 1–12. 

10. L. A. Alnaser, D. Lateef, J. Ahmad, Some new fixed point theorems for compatible mappings in 

partial metric spaces, J. Math. Computer Sci., 18 (2018), 346–356.  

11. S. Banach, Sur les op´erations dans les ensembles abstraits et leur applications aux ´equations 

int´egrales, Fundam. Math., 3 (1922), 133–181.  

12. Chistyakov VV. A fixed point theorem for contractions in modular metric spaces. arXiv preprint 

arXiv:1112.5561. 2011 Dec 23. 

13. Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. 

14. M. Berzig, Solving a class of matrix equations via the Bhaskar-Lakshmikantham coupled fixed point 

theorem, Appl. Math. Lett., 25 (2012), 1638–1643. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240528419 Volume 6, Issue 5, September-October 2024 12 

 

15. I. A. Bakhtin, “The contraction mapping principle in almost metric space,” Functional Analysis, vol. 

30, pp. 26–37, 1989. 

16. W. A.Takahashi, A convexity in Metric sapce and nonexpansive mappings, Kodai Math. Sem. Rep. 

22(1970), 142-149. 

17. D. Wardowski, “Fixed points of a new type of contractive mappings in complete metric spaces,” 

Fixed Point Theory and Applications, vol. 2012, article no. 94, 2012. 

18. Chistyakov VV. Modular metric spaces, I: basic concepts. Nonlinear Analysis: Theory, Methods & 

Applications. 2010 Jan 1;72(1):1-4. 

19. Bera, Ashis & Garai, Hiranmoy & Damjanovic, Bosko & Chanda, Ankush. (2019). Some Interesting 

Results on F -metric Spaces. Filomat. 33. 3257-3268. 10.2298/FIL1910257B. 

20. Chistyakov VV. Modular metric spaces, II: Application to superposition operators. Nonlinear 

Analysis: Theory, Methods & Applications. 2010 Jan 1;72(1):15-30. 

21. Kilmer, S. J., Kozlowski, W. M., & Lewicki, G. (1990). Best approximants in modular function 

spaces. Journal of Approximation Theory, 63(3), 338-367. 

22. Frechet MM. On some points of functional calculation. Rendiconti del Circolo Matematico di 

Palermo (1884-1940). 1906 Dec; 22 (1): 1-72. 

23. O. Alqahtani, E. Karapinar, and P. Shahi, “Common fixed point results in function weighted metric 

spaces,” Journal of Inequalities and Applications, vol. 2019, no. 1, Article ID 164, 2019. 

24. E. Karapinar, A. Pitea, and W. Shatanawi, “Function weighted quasi-metric spaces and fixed point 

results,” IEEE Access, vol. 7, pp. 89026–89032, 2019. 

25. M. Jleli and B. Samet, “On a new generalization of metric spaces,” Journal of Fixed Point Theory 

and Applications, vol. 20, no. 3, article 128, 2018. 

26. Manav N, Turkoglu D. Common fixed point results on modular ℱ-metric spaces. In AIP Conference 

Proceedings 2019 Dec 6 (Vol. 2183, No. 1, p. 060006). AIP Publishing LLC. 

27. Som S, Bera A, Dey LK. Some remarks on the metrizability of  F-metric spaces. Journal of Fixed 

Point Theory and Applications. 2020 Mar;22(1):1-7. 

28. Huang, H., Deng, G. and Radenovi´c, S., Fixed point theorems in b-metric spaces with applications 

to differential equations, J. Fixed Point Theory Appl. 20 (2018), Article no. 52. 

https://www.ijfmr.com/

