

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Ema

• Email: editor@ijfmr.com

A Summarized and Complete Review on Hypertension: Focusing the Audience of Diploma Pharmacy for Basic Understanding

Chanda Malviya

Assistant Professor, Department of Pharmacology, VNS Group of Institutions, Faculty of Pharmacy, Bhopal (MP) and PhD scholar at Lovely Professional University, Phagwara, Panjab

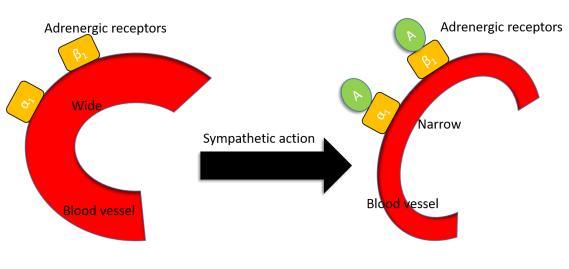
Abstract:

Hypertension (HTN) commonly known as high blood pressure has become one of the most detrimental and life-threatening condition for public health. High blood pressure does not merely affect the heart muscles, but it is also a root cause of multiple dysfunctions of other systems. Untreated blood pressure can cause cardiac problems, ischemic conditions, stroke, renal difficulties, and optic nerve damage. One of the most problematic cause is "silent killer" which means high blood pressure demolishes and worsens the health of the affected person without showing any symptoms till the blood pressure reaches too high. HTN is a life-threatening problem that can be controlled and managed by medicinal or herbal products. This review contains the background, etiology, pathophysiology, and current treatments for high blood pressure. This review aims to deliver basic knowledge or understanding of HTN and management by using drug products with their mechanism of action.

Keywords: HTN, Etiology, Pathophysiology, Pharmacological treatment, Mechanism of action

1.1 Introduction

HTN comprises two words; hyper means high and tension implies stress. This term clarifies the pressure or stress exerted via the excess blood volume on cardiac walls or other vessels. In other words, HTN decodes abnormal blood pressure when the systolic blood pressure (SBP) reaches 130 mmHg and diastolic blood pressure (DBP) attains more than 80 mmHg. The SBP is defined as when the heart contracts and pumps the blood volume at the upper and lower portions of the body. At this time the pressure experienced by the heart muscles should not be more than 120 mmHg. On the other hand, normal DBP counts 80 mmHg at the time of relaxation of the heart wall or vasodilation. World Health Organization (WHO) explained the SBS and DBS as;


SBP: pressure feels at the time of heart beats for pumping. DBP: pressure exerted at the time of resting of heart between beats.

Sr. No.	Range on stage	SBP	DBP
1.	Normal	<120	<80
2.	High blood pressure	120-129	<80
3.	Stage I	130-139	80-89

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

 4.
 Stage II
 >140
 >90

Table: 1 Normal and abnormal blood pressure range

A. Normal blood vessel

B. Narrowed blood vessel

Fig. 1 Constriction of blood vessels due to the attachment of adrenaline (A) activates the sympathetic nervous system and helps to create blood pressure.

1.2 Types

Primary HTN: It occurs due to an unhealthy lifestyle or is not associated with any other disease or disorder.

Secondary HTN: It is associated with other diseases or disorders means affected patients who already suffer from another medical condition.

1.3 Signs and Symptoms

Sign: when the normal condition is observed by the other one. eg; redness, inflammation, skin rashes, hair fall and changes in physical appearance.

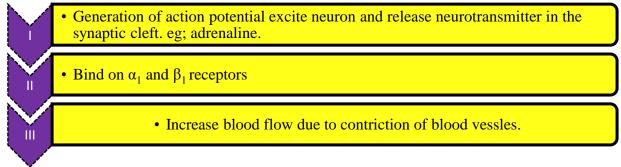
Symptoms: Experience by affected person or patient. eg; pain, body aches.

- Silent killer (No symptoms)
- Symptoms show at the time when blood pressure reaches an extreme level
- Headache
- Dizziness
- Irregular heartbeat
- Chest pain
- Blur vision
- Anxiety

1.4 Causes/Etiology/Risk factors

- Genetics (Family history of HTN)
- Age

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>


Email: editor@ijfmr.com

- Obesity
- Intake of high sodium diet
- Lack of physical activity
- Unhealthy diet
- Mental stress
- Diabetes
- Hyperlipidemia
- Excess use of alcohol
- Smoking
- Tobacco

1.5 Pathophysiology

Healthy or normal blood pressure is usually created by the activation of the adrenergic or sympathetic nervous system following a fight mechanism and shows an increase in blood pressure. Another one releases the renin hormone from the kidney and starts increasing the level of blood pressure by retaining water and sodium contents.

Mechanism I

Fig. 2 Sympathetic mechanism of blood pressure

Activation of the adrenergic system

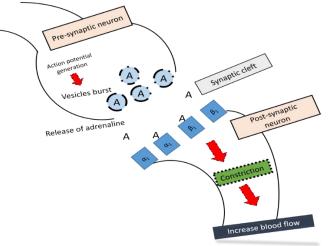


Fig. 3 Adrenaline works as an agonist and shows biological response as constriction in the blood vessels, increasing the blood flow during physical activity or workload.

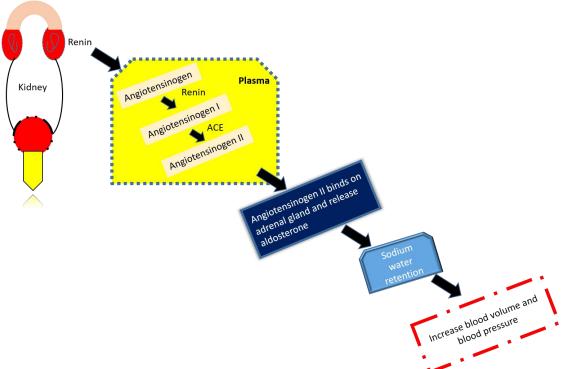
E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

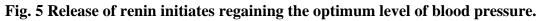
• Email: editor@ijfmr.com

Mechanism II

Renin angiotensinogen system:

low level of water and sodium alerts macula densa cells present at kidney.


Macula densa cells activates juxtra glomerulus cells and release renin.


Renin convert plasma protein angiotensiogen (AT) into (AT_1) .

 AT_1 convert into AT_2 by using angiotensinogen converting enzyme (ACE).

 AT_2 bind on AT_1 receptor present at adrenal gland, release aldosterone and retain water and sodium ions which imporve blood pressure.

Fig. 4 Renin angiotensinogen mechanism

• Email: editor@ijfmr.com

1.6 Prevention

- Healthy diet •
- Avoid excess sodium content •
- Healthy sleep •
- Away from stress •
- Meditation •
- Physical exercise •
- Healthy weight •
- Avoid smoking and alcohol •
- Health check-up •

1.7 Complication

- Risk of heart disease eg, heart attack and myocardial infarction •
- Brain stroke •
- Kidney disease •
- Optic damage
- Angina pectoris •
- Sexual difficulties in both male and female •

1.8 Diagnosis test

- Sphygmomanometer •
- Blood test •
- Eye test •
- Echocardiogram •

1.9 Medication

Pharmacological treatment: When high blood pressure is treated or controlled by the pharmaceutical drug product.

Table 2. Category I: Diuretics

Drug	Brand name	Mechanism		
Thiazide				
Hydrochlorothiazide		Decrease reabsorption of sodium		
Chlorthalidone				
Indapamide				
	High ceili	ng		
Furosemide Decrease reabsorption of sodium		Decrease reabsorption of sodium		
Potassium Sparing				
Spironolactone		Diminished the action of aldosterone		
Eplerenone				
Amiloride				

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Drug	Brand name	Mechanism		
ACE inhibitors				
Captopril	CAPOTRIL, ACETEN			
Enalapril	ENAPRIL, ENVAS	Inhibit ACE and block conversion of		
Lisinopril	LINVAS, LISTRIL	AT_1 to AT_2		
Perindopril	COVERSYL			
Ramipril	CARDACE, RAMIRIL			
Fosinopril	FOSINACE			
Quinapril	ACCUPRIL-H			
	Quinapril+hydrochlorothiazide			
Trandolapril	ZETPRIL			
	AT ₁ receptor blo	ockers		
Losartan	LOSAR	Block AT ₁ receptor		
Candesartan	CANDESAR	(Act as Antagonist)		
Valsartan	DIOVAN			
Telmisartan	TELMA			
Irbesartan	IROVEL			
Olmesartan	OLMAT			
Direct renin inhibitor				
Aliskiren	RASILEZ	Inhibit renin function		
	Direct renin inh			

Table 3. Category II: Renin-angiotensin blockers and inhibitors

Table 4. Category III: Adrenergic receptor blockers

Drug	Brand name	Mechanism		
Selective β1 -blockers				
Propranolol	Besprol	Block β_1 receptor and causes		
Atenolol	Anten-50mg	vasodilation.		
Metoprolol	Asoprol			
Bisoprolol	Biselect			
Esmolol	ESOCARD			
	Selective o	1 -blockers		
Prazosin	Minipress	Block α_1 receptor and causes		
Terazosin	Hytrin-2	vasodilation.		
Doxazocin	Doxacard			
Phentolamine	FENTANOR			
Phenoxybenzamine	FENOXENE			
Alfuzosin	Alfusin			
	α+β bl	lockers		
Labetalol	Labetamac	Block both receptors and cause		
Carvedilol	Carvedil	vasodilation.		
	Central syn	npatholytics		
Clonidine	CATAPRES			

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Methyldopa	EMDOPA	Works as α_2 agonist gives sympatholytic	
		effect on the brain.	

Table 5. Category IV: Calcium channel blockers

Drug	Brand name	Mechanism		
	Phenyl-alkylamine Phenyl-alkylamine			
Verapamil	CALAPTIN	Inhibit calcium channels		
	Benzothiazepine			
Diltiazem	DILZEM	Inhibit calcium channels		
Dihydropyridines				
Nifedipine	CALCIGARD	Inhibit calcium channels		
Felodipine	FELOGARD			
Amlodipine	AMLOPRES			
Nitrendipine	NITREPIN			
Lacidipine	LACIVAS			
Lercanidipine	LERKA			
Benidipine	CARITEC			

Table 6. Category V: Vasodilators

Drug	Brand name	Mechanism		
Arteriolar dilators				
Hydralazine	NEPRESOL	Act as vasodilators		
Minoxidil	Minoxiheart 5			
Diazoxide	Edumin			
Arteriolar+venodilator				
Nitroprusside sodium	SONIDE	Act as vasodilators		

1.10 Non-pharmacological treatment (Treat by medical consultation)

- Regular check-up
- Changes in lifestyle
- Healthy diet
- Weight loss
- Physical Exercise

1.11 Side effects of some drugs

Table 7. Common side effects of drugs

Sr. no.	Class	Drug	Side effects
1.	Diuretic	Furosemide	Headache, dry mouth,
			dizziness
2.	ACE inhibitor	Captopril	Cough, low blood
			pressure
3.	AT ₁ receptor blockers	Losartan	Dizziness, nausea

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

4.	Selective β_1 -blockers	Propranolol	Dizziness, cold hands
5.	Calcium channel blockers	Verapamil	Constipation
6.	Arteriolar dilators	Minoxidil	Hair growth

1.12 Conclusion

As researchers, drug discovery requires meticulous knowledge of a target disease and disorder. This review combined and exhibited the quickest and easiest ways to understand the development and management of HTN. The preparation of this review focuses student's attention on a basic understanding of HTN.

References

- 1. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, Grassi G, Jordan J, Poulter NR, Rodgers A, Whelton PK. Hypertension. Nat Rev Dis Primers. 2018 Mar 22;4:18014.
- 2. Iqbal AM, Jamal SF. Essential Hypertension. [Updated 2023 Jul 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024.
- 3. <u>https://www.who.int/news-room/fact-sheets/detail/hypertension</u>.
- 4. Tripathi, KD. Essentials of medical pharmacology. Jaypee Brothers Medical. 2013. 7th edition. New delhi. 495-558.
- 5. Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, Vlietinck R. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995 Dec;26(6 Pt 1):919-24.
- 6. Blood Pressure Lowering Treatment Trialists' Collaboration. Blood pressure-lowering treatment based on cardiovascular risk: a meta-analysis of individual patient data. Lancet. 2014 Aug 16;384(9943):591-598.
- 7. Verdecchia P, Reboldi G. Risk and decision making in patients with hypertension. Lancet. 2014 Aug 16;384(9943):562-564.
- 8. Roberts I, Prieto-Merino D. Blood pressure lowering and cardiovascular risk. Lancet. 2014 Nov 15;384(9956):1745.
- 9. Treating blood pressure between 140/90 and 160/95 mmHg: no proven benefit. Prescrire Int. 2014 Apr;23(148):106.
- 10. The treatment threshold for hypertension. Prescrire Int. 2014 Sep;23(152):219.
- 11. Mirabito Colafella, K.M., Bovée, D.M., Danser, A.H.J., The renin angiotensin aldosterone system and its therapeutic targets, Experimental Eye Research. 2019.