

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240529265 Volume 6, Issue 5, September-October 2024 1

Sorting Numbers in Ascending Order Using Java

K. Naga Vihari

Guest Faculty, Department of Statistics, Sri Venkateswara University, Tirupati, AP, India.

Abstract

Sorting is a fundamental operation in programming that is widely used across various applications, from

data analysis to organizing user inputs. This article explores the implementation of sorting numbers in

ascending order using java programming language as Java's Arrays.sort().Through code examples and

performance analysis, readers will gain an understanding of how different programming languages

handle sorting operations, and which languages offer the best performance for specific scenarios. This

comparative study aims to provide developers with the knowledge to choose the most appropriate

sorting technique for their projects.

Keywords: Ascending Order, Java, Comparative Study

Introduction

Sorting is a fundamental concept in programming that is utilized in many kinds of applications,

including data analysis and the organization of user input. In this article, we will focus on how to sort

integers in ascending order with Java. To effectively sort the data, the software makes use of the Java

Arrays class's built-in capability.

Understanding Ascending Order

Ascending order refers to the arrangement of numbers from least to greatest. For example, sorting the

integers 25, 10, and 50 in ascending order yields 10, 25, 50. In Java, sorting an array in ascending order

is simple with the Arrays.sort() function, which is both efficient and user-friendly.

Java Program Implementation

Below is the Java code that sorts an array of integers in ascending order:

java

Copy code

importjava.util.Arrays;

importjava.util.Scanner;

public class AscendingOrder {

public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

System.out.print("Enter the number of elements: ");

int n = scanner.nextInt();

int[] arr = new int[n];

System.out.println("Enter the elements:");

for (inti = 0; i< n; i++) {

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240529265 Volume 6, Issue 5, September-October 2024 2

arr[i] = scanner.nextInt();

 }

 // Sorting the array in ascending order

Arrays.sort(arr);

System.out.println("Elements in ascending order:");

for (intnum : arr) {

System.out.print(num + " ");

 }

scanner.close();

 }

}

Explanation of the Code

1. Reading Input: The application prompts the user to specify the number of elements to sort. This is

accomplished via a Scanner object. The number is saved in the variable n, and the program generates

an array arr of size n to hold the elements.

2. Storing User Input: The software prompts the user to enter elements one by one, which are

subsequently placed in the arr array.

3. Sorting the Array: The program's main line is Arrays.sort(arr);. This method sorts the array arr in

ascending order with the efficient dual-pivot Quicksort algorithm for primitives, which has temporal

complexity.

4. Displaying the Sorted Array: The software sorts the array and then prints the elements in

ascending order using a for-each loop.

5. Closing the Scanner: The application shuts the scanner to avoid resource leakage.

Sample Output:Here’s a sample run of the program:

Copy code

Enter the number of elements: 10

Enter the elements:

12

15

14

36

63

52

25

96

45

12

Elements in ascending order:

12 12 14 15 25 36 45 52 63 96

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240529265 Volume 6, Issue 5, September-October 2024 3

The usage of the Arrays.sort() function makes it easier and simpler this program. The technique

internally implements a highly efficient sorting algorithm that reduces time and space complexity,

ensuring that the sorting process runs quickly even for massive data sets.

Real-World Applications

Sorting data in ascending order has several real-world uses, including:

• Data analysis involves organizing and identifying trends, outliers, and patterns.

• Efficiently explore sorted data with methods such as binary search.

• Organize records by sorting names, dates, or numbers for easier reading and accessibility.

Conclusion:

This article showed how to sort a list of integers in ascending order with Java. Using the built-in

Arrays.sort() method, the code is both simple and powerful, making it an excellent choice for both

novices and professionals. Sorting is a simple but important operation in many programming tasks, and

understanding how to implement it is essential for any Java programmer.

References:

1. GeeksforGeeks: Java Arrays sort() Method

2. JavaTPoint: Sorting an Array in Ascending Order in Java

https://www.ijfmr.com/

