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Abstract 

Malware analysis becomes one of the main issues in today's world since attackers are producing a 

variety of malwares, and even their characteristics are updating at an incredibly fast rate.    Malware has 

to be discovered before it impacts a lot of systems to safeguard computer systems and the internet from 

them. Several types of research on malware detection techniques have recently been conducted. But it is 

still difficult to identify malware. For identifying malware, there are essentially two methods: One is an 

identification method that is based on signatures, and the other is dependent on behaviour. The 

behaviour-based strategy may detect new and complicated malware to some degree utilizing machine 

learning and other techniques, but it is a difficult one. Signature-based is rapid and effective just for 

detecting known malware. In this paper, various techniques of malware detection are reviewed and 

analysed in terms of certain parameters. 
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1. Introduction 

Attacks by malware have considerably turned into a menace to contemporary internet security. These 

programs can easily obtain sensitive information, such as banking account details, login credentials, 

messages, and contacts. Furthermore, if anything goes wrong, they can damage the data's integrity and 

accessibility. Recent security reports have shown that malware is the most common method of cyber-

attack used by hackers, and ransomware families are the most dangerous. The detection and removal of 

these attacks from the damaged systems are very difficult [1].Due to the rapid malware attacks on the 

Internet, it has become crucial to invent advanced software for malware detection to be able to protect 

the cyberspace as well as to save money from such attacks. Problems related to inadequateness in 

analytical processes, performance precision, and techniques which are incapable of detecting unknown 

malware types have made classification and the differentiation of malware one of the major issues 

throughout the years.Digital learning platforms have opted for ML algorithms in the defence of internet-

connected devices against malware. Different ML frameworks have been used, studied, and developed to 

accomplish the task of malware classification into specific families by utilizing the features obtained 

from both static and dynamic analyses of the malicious software. 

 

1.1 Malware Detection Process 

Figure 1 elucidates the overall malware detection process. The analysis of the malware and the detection 

of malware are the two stages that are included in the process of malware detection [2]. 
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Figure 1: The overall process of malware detection [2] 

1.1.1 Malware Detection 

Researchers classify malware detection techniques in four categories: behaviour-based, heuristic-based, 

specification-based, and signature-based. These techniques are used to identify, detect, and counteract 

malware such that the computer systems do not end up simulating the loss of data and resources. 

i.Signature-based: Most of the antivirus software uses signature-based techniques to find infected files. 

The antivirus software deconstructs the compromised file's code and looks for a pattern that is analogous 

to a family of malware. A signature consisting of a series of bits is injected into the code when malware 

is created, which can be used to identify its family. To compare malware signatures during detection and 

to keep them in a database is also the case. This method of detection is also referred to as pattern 

matching, string, or pattern scanning. The method can be dynamic or static or a hybrid combining both 

[3]. 

ii. Behaviour-based: Behaviour of malware is the reason for behaviour-based detection. A behaviour-

based approach solves the signature-based technique's weakness. The main advantage of this method is 

that it is able to discover zero-day malware. Nonetheless, if not all the possible malware scenarios are 

examined thoroughly, this method can cause a lot of false positives. 

iii. Heuristic-based: Heuristic-based detection makes it possible to identify the known and unknown 

malware attacks through the detection of a system's typical or atypical activity. The heuristic detection 

method is divided into two sections. The first step is to monitor the system's functioning without being 

impacted by an attack and simultaneously keeping a record of the data that is important and can be 

verified by subsequent checking. This difference is used to the second stage to track down malware 

belonging to a certain family. 

iv. Specificationbased: Specification-based detection approaches further include monitoring applications 

and analysing them to detect non-normal and abnormal behaviour which is based on system 

specifications that are already predefined. A major difference between specification and heuristic-based 

detection is the way they work. Heuristic-based detection uses machine learning and artificial 

intelligence to learn the normal or suspicious activities that are present in legitimate programs, on the 

other hand [4], specification-based detection is the evaluation of the system behaviour that is described 

in its specifications. This method includes manual comparisons of the system's signature activities to the 

expected behaviours as specified in the specifications. 

1.1.2 Malware Detection Analysis 

Malware analysis is the very first step in understanding if the software is malicious or not. Devs should 

incorporate proper methods to protective malware that has been reflected for its functionality and 

purpose. Depending on the time of use and the technique applied, malware analysis can be of three 

types: static, dynamic and hybrid. 

i.Static analysis:Static analysis, which is the inspection of the structure of an executable file without act- 
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ually running it, relies on some attributes such as distinct sections and memory layout. Such analysis is 

done in two phases [5]: basic and advanced. Basic static analysis is the technique that is used to explain 

the properties of the malware, for example, by providing information such as file size, type, and header 

information, to give you a quick understanding of the malware. Hundreds of different tools are used in 

this stage, for example, to collect and analyse and measure these attributes. After basic analysis, 

advanced static analysis goes to the next level by investigating the malware's behaviour and using more 

effective tools that first analyse commands to find out how the program works in detail. What is more, 

static analysis has some limitations when it comes to the detection of the obfuscated malware, because it 

hardly assesses the packed or encrypted samples. 

ii. Dynamic analysis: Dynamic analysis is the process of running malware to see how it behaves and 

thereby, to let the analysts understand how it works. This is to ensure the machine does not fall victim to 

the malware, hence the analysis is done in a controlled environment, for instance, a virtual machine or 

sandbox [6]. Dynamic analysis is broken down into two parts: the basic and the advanced. In basic 

dynamic analysis, the monitoring tools are used to track the activities of the malware, while the 

advanced dynamic analysis uses the debuggers to execute commands line by line, giving the analysts the 

possibility to change the parameters and variables.Throughout the time, the malware is granted absolute 

authority to use all system resources at will; when the execution is done, the environment goes back to 

its state as depicted at the beginning of the process. An agent located in the isolated environment is 

responsible for recording the malware's behaviour. As opposed to static analysis, dynamic analysis can 

recognize obfuscated malware as well as newly developed threats. 

iii. Hybrid Analysis: Hybrid analysis connects two types of two techniques, static and dynamic, in order 

to find and analyse malware. In the beginning, it uses static analysis to check the malware's code and 

structure and see if it works or not. Then, the dynamic analysis technique is applied to get more 

information about the malware's movements. Through this hybrid process, the limitations of only using 

static or dynamic analysis are coped with, thus providing a more ample insight into the functionality of 

the malware. By having the two methods side by side, the hybrid analysis improves the whole process of 

detecting and analysing, therefore, making it easier and more comprehensive for the identification of 

malware. 

 

1.2 Machine learning For Malware detection and classification 

It can be said that ideology of malware developers mainly is to invade computer networks and 

infrastructure with the sole aim of stealing confidential data, extorting money or demonstrating their 

capabilities [7]. Traditional malware detection methods have been very effective in the identification of 

already known threats. However, they found it more difficult to block malware drafted from new and 

emerging techniques. Advanced techniques in machine learning have contributed significantly to the 

detection accuracy of models used for malware classification. Malware detection by means of machine 

learning consists in the following two main steps: first extracting features from the input data and 

selecting the most relevant ones that effectively represent the data, then performing classification or 

clustering. Figure 1 shows the machine learning process for malware detection 

 
Figure 2: Machine learning pipeline for malware detection [7] 
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i.Data collection:The collection of data that contributes to a machine learning project is indeed the first 

as well as the most important step in the machine learning pipeline as it has a straight influence on the 

model's behaviour. A common principle in machine learning, "garbage in, garbage out," highlights the 

fact that the quality of the input data accurately describes the quality of the model's output. When the 

training data is poor, wrong, incomplete, or biased, the model will probably perform even worse than 

before, no matter the model's complexity, the intelligence of the data scientists, or the resources spent 

[8]. The model's training data contains only the patterns provided;thus, it is of utmost importance to 

strictly collect and validate the data before it is deployed in machine learning models.In the scenario of 

malware detection, data collection refers to the process of getting hold of and labelling both benign and 

malicious executables. Commercial Windows software is under copyright protection, therefore, the 

distribution of it without proper authorization might result in legal issues. To this end, researchers often 

collect benign data from uninfected copies of different versions of Windows operating systems (e.g., 

Windows XP, Windows 7, and Windows 10) and from various software package managers such as 

Chocolatey and Windget. 

ii. Data Preprocessing: The second stage of data preprocessing is to carry the raw binaries out to the 

suitable format for analysis [9]. This stage incorporates the extraction of information from different 

sources such as the hexadecimal representation, the assembly language code, the file metadata and the 

sequences of API calls that are visible in dynamic analysis. The purpose of data preprocessing is to make 

raw data more intelligible to machine learning models.Datapreprocessing is the main process in this step 

and it is done in machine learning based malware detection. Data preprocessing is the activity of 

preparing and cleaning data so that it may be used for analysis and can generally be classified into two 

categories: static and dynamic approaches. 

• Static Analysis: This involves analyzing programs without the use of execution. It consists of a study 

of the Portable Executable (PE) structure, headers, dynamic library references, and sections. The 

same can be done for disassembling programs so as to give the assembly language source code 

which, in turn, gives an insight into low-level instructions and memory interactions. 

• Dynamic Analysis: This is the procedure of executing the software in a controlled environment, 

which enables the supervisor to keep track of its behaviour. However, if static analysis is no longer 

enough because of obfuscation, packing, or other limitations, dynamic analysis comes into play. The 

latter makes it clearer to see the malware's actual functionality since the program is tracked while it is 

being executed [10]. 

Machine learning-based models for malware detection have been classified into static and dynamic 

detectors according to the type of analysis they perform. 

iii. Model Training and Model Evaluation: The process of model training and evaluation involves 

choosing the most suitable machine learning algorithm, training the model, and assessing its 

performance. 

• Model selection: The job of choosing the most appropriate machine learning algorithm for the 

learning task is the function of this pipeline stage. The particular type of algorithm that is most 

effective would vary based on the characteristics of the data being passed through. A spatial 

relationship, for example, is better suited to convolutional neural networks than Support Vector 

Machines when the input to the neural network contains a sequence of bytes. The primary advantage 

of using decision trees over neural networks is their ability to be non-interpretable. This means that 

PE file input data consisting of a collection of features is a better candidate for decision trees [11]. 

https://www.ijfmr.com/
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• Training the model:In this part, the chosen model or models are trained with the training data set and 

their hyperparameters are tuned. 

• Model evaluation: Many things first of all must be done right - tuning the model's parameters is one 

of them, and also, ensuring its transferability is another part of the task. This consists of evaluating 

the model using the validation set to determine whether it is able to generalize well to unseen data. In 

regard to malware detection, the system predicts whether the input file is malicious or benign; hence, 

there are four possible scenarios. A false negative occurs when the model says the file is malware 

despite it being innocent. A false positive would be when the file is benign and the model claims it is 

malware. A true negative would occur when the file is benign and the model says it is benign. Hence, 

these are the four possible outcomes of a given scenario.In these kinds of situations, striving only for 

precision can be misleading as the classifier can get a high score simply by predicting the majority 

class all the time. The F1 score is a critical indicator in such cases. The F1 score is a model's 

performance score that includes both recall and precision to give a more objective assessment of a 

model's performance. 

iv. Model Deployment, Monitoring and Maintenance: Model deployment entails deploying a model for 

its intended purpose [12]. This although means the incorporation of the trained model into a system that 

performs real-time malware detection. Model monitoring and maintenance consist of conducting regular 

performance tests of the model in the deployed environment to identify whether there are any changes in 

performance and to periodically refresh the model with new benign and malicious examples to adapt to 

new patterns and maintain its effectiveness. 

 

1.3 Machine learning models for Malware detection 

A method that makes the program to self-evolve based on recent input data is compulsory for each 

machine learning algorithm to produce optimum results. This mechanism implements the system to learn 

more and more. Subsequently are the incompetently popular machine learning algorithms of suitable 

users for malware detection [13]. 

i.Support Vector Machine (SVM): SVM algorithms establish one or multiple surrogate hyperplanes for 

the high-dimensional space or even the infinite-dimensional space to perform data segmentation. In the 

end, the hyperplane is responsible for the optimal partition which has the greatest distance from the 

nearest points belonging to different classes and is known as the margin. A high-value margin infers the 

low probability of a misclassification. 

ii. K-Nearest Neighbour (KNN): KNN was mainly used in classification tasks but it is also important in 

malware detection for its interpretability, computational speed, and prediction capabilities as noted in 

our study. KNN can help with planning and regression issues but it is used in our context to classify the 

malware by identifying the class that the input is most similar to. The model finally classifies the data 

into the two classes: whether the malware is present or not. 

iii. Naïve Bayes (NB): Naive Bayes (NB) is a classification algorithm that overrides normal distribution 

to analyze the relationship between two or more variables using probability. It computes the chance of 

data existing in a particular category by employing the principles of probability. The first step in the 

training phase consists of providing the system with a set of data and appropriate class labels for each 

data[14]. As for new test data, the system uses the previous learned probabilities to get the highest 

probable category for the test data by performing probability operations on the trained data. 

https://www.ijfmr.com/
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iv. Decision Tree (DT): A decision tree (DT) is represented as a rooted node, branches, and leaves as the 

last nodes. One node stands for a test attribute, each branch denotes the possible outcome of a test, and 

each leaf is a class label. DTs are not designed for heavy training but are based on the concept of data 

entropy which is easy to grasp. A learning phase and a decision tree classification phase are the two 

simple and efficient phases of a decision tree. 

v. Random Forest:The Random Forest borrowed its name from the collection of tree predictors, which 

are used to tackle both classification and regression tasks. The step of the Random Forest algorithm 

consists of the following: At first, the feature data vector is put into the random forest classifier. But, to 

begin, every tree in the forest classifies the data. The final output is decided by the label or the class that 

gets the most votes from the trees. In regression tasks, the algorithm is first averaging the values that are 

predicted by all the trees. The trees are trained in the same way, but they are on the different training 

datasets [15]. 

 

1.4 Ensemble Learning  

Ensemble methods rely on the principle of generating many sets of classifiers through the readjustment 

of whole training datasets with the help of some techniques like resampling or the reweighting. Each of 

the base classifiers is uniquely framed from a different version of the dataset and a new ensemble 

classifier is constructed using the stacked ensemble method. The strategy enables the amalgamation of 

various base classifier predictions, with a new model that gradually learns how to better merge these 

predictions. Thus, this method attempts to deal with the problem concerning the high false positive and 

false negative rates in the machine learning system by bringing about a general increase in accuracy 

through the different techniques such as Bagging, Boosting, and Stacking. 

i.Bagging: Bagging, or Bootstrap Aggregating, is a process of creating several different models of a 

single learning algorithm by taking random samples from the subsets of the training dataset with 

replacement. To combine the predictions from these models, two methods are commonly used: majority 

voting and averaging [16]. In the case of voting, the model that has the most votes from the classifiers is 

the one that is selected as the final prediction. In averaging, the outcome is obtained by summing up all 

the predictions of the classifiers and dividing them by the number of classifiers. 

ii. Boosting: This method is used for improving the predictions of the model. The boosting technique 

chooses the samples that are wrongly predicted and reinforces their weights. Boosting, in a nutshell, is a 

slight twist on bagging. The first step in boosting is to distribute the weights equally among all the 

instances. Teach the classifiers to make predictions on wrongly classified instances, then adjust the 

weights of the incorrectly predicted instances. Lastly, take the weighted mean of all weak learners to 

form a strong learner which is your final model. Many boosting algorithms like AdaBoost, Gradient Tree 

Boosting, and XGBoost are available. 

iii. Stacking: Stacking, or stacked generalization, is a method that combines several classifiers which are 

produced by different machine learning algorithms. The first phase includes the training of each 

algorithm with the training data. In the second phase, the models' predictions are used as input for a 

second-level model, which is trained to make final predictions on the test data. 

 

2. Literature review 

S. A. Roseline, (2019) developed a Malware author’s new variants by applying polymorphic and evasion 

techniques to existing malware, which made them harder to detect. To solve this problem, malware 
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patterns were identified using a vision-based method that detected and visualizes these patterns in 

images and characterizing their features [17]. This paper presented a hybrid stacked multi-layer 

integration method that proved to be more powerful and efficient than deep learning models. The 

proposed model achieved an impressive accuracy of 98.91%, surpassing both traditional machine 

learning and deep learning methods. It was well-suited for both small-scale and large-scale datasets due 

to its adaptive nature, which automatically adjusted the number of sequential layers. Additionally, this 

method was computationally efficient and required fewer hyperparameters than deep neural networks. 

M. J. Hussain, et.al (2022) projected a behavioural malware detection method using machine learning 

classifiers for PE (Portable Executable) data [18]. The system was trained and tested using the 

BODMAS (Blue Hexagon Open Dataset for Malware Analysis), which contained samples from August 

2019 to September 2020. This approach was divided into two stages: The first stage used a binary 

classifier (specifically random forest) to determine if the PE profile was bad. The second stage involved 

identifying malware families according to various probing methods. This classifier included KNN (K-

nearest neighbour), SVM (support vector machine), Random Forest, Decision Tree, and Gradient 

Optimization with equal weight for each classifier. This proposed method achieved good results with 

99.48% accuracy at binary classification level and 92.49% accuracy at malware family classification 

level of BODMAS dataset 

J. Wang, T. Yang, et.al (2022) presented a novel MCES (multi-classifier ensemble system) using 

behaviour analysis for malware detection [19]. The MCES model adopted a hierarchical structure, and 

its main components include a base classifier and a meta-classifier. To test its performance, the model 

was evaluated on 14,800 malware samples and 14,800 good samples. The results showed that MCES 

outperforms existing machine learning methods in detecting malware based on an API (application 

program interface) called session. More importantly, the MCES mode achieved the highest accuracy of 

97.54% and the highest recovery of 97.85% compared with the state-of-the-art deep learning-based 

malware detectors. 

M. N. Al-Andoli, (2023) proposed an ensemble-based parallel DL (deep learning) classifier for malware 

detection. More specifically, they developed a joint learning method that combined five deep learning 

models with neural networks based on meta models [20]. These deep learning models were trained and 

optimized using an optimal method combining BP and particle swarm optimization PSO (Particle 

Swarm Optimization) algorithms. They leverage a parallel computing framework to improve scalability 

and efficiency. This combination was evaluated on five malware datasets (Drebin, NTAM, TOP-PE, 

DikeDataset, and ML_Android) and achieved 99.2%, 99.3%, 98.7%, 100%, and 100% accuracy, 

respectively. Moreover, using the same processing time effectively increases the computational speed, 

resulting in a performance increase of up to 6.75x. These results confirmed that the proposed integration 

was both efficient and effective, outperforming many existing malware detection methods. 

H. Zhu, Y. et.al (2023) investigated the limitations of existing methods to improve malware detection, 

such as considering each feature separately and relying on duplicate data [21]. To solve these problems, 

they proposed a multi-system integration model called MEFDroid, which used deep learning-based 

inference techniques together with predictors to learn the details of the raw materials. They also adopt a 

novel fusion strategy to integrate multiple representation methods and relationships to utilize the original 

data. In order to evaluate the effectiveness of the MEFDroid framework, they conducted a series of 

benchmark tests to determine how our proposed systems (ESAES, EDAES, and EDAFS) progressively 

improved malware detection. They also compared these algorithms with classical machine learning 
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methods and conventional sampling. They tested the reliability of this method using other demographic 

data. This extensive testing showed that the EDAFS model in MEFDroid outperforms other models in 

most benchmarks, proving it to be an effective solution for Android malware detection. 

H. Naeem, et.al (2023) presented a malware detection method had significant limitations, leading to the 

development of other dynamic platform-friendly methods to debug hardware issues [22]. This approach 

involved converting data collected from process memory dumps into images and performing composite 

modeling and texture analysis. The combination of local and global descriptors improved the data 

training ability of deep hybrid models by reducing input dimensions. The model combined the predicted 

results of weak learners such as CNNs and feeds them into a MLP (meta-learner) for further learning. 

Descriptive cognitive techniques were also used to interpret and validate the results. This concept was 

evaluated on three databases: Dumpware10 (3686 samples from 10 malware families), CIC-MalMem-

2022 (2916 samples from 15 obfuscated malware families), and Real Knowledge of malware samples 

and 2375 samples of benign Android apps. The test results showed that the system achieved 99.1% 

accuracy of Windows malware memory dumps, 94.3% accuracy of Android malware memory dumps, 

and 99.8% accuracy of Windows obfuscated malware memory dumps, indicating its benefits in 

preventing malicious schemes. 

P. Bhat, S. Behal, et.al (2023) presented an accurate dynamic analysis method to identify various 

malicious attacks. This method focused on analyzing the behavior of malware, especially on reproducing 

the behavior of Android malware [23]. The identified behavioral features include call, binding, and 

complex Android devices, which together represent hybrid behavior. A task selection process was 

applied to remove irrelevant features to improve malware detection and classification. Homogeneous 

and heterogeneous ensemble machine learning algorithms were used for classification. Among these, the 

stacking method has the highest distribution rate of 98.08%. Rigorous tests demonstrated the 

effectiveness and superiority of the model. 

Saddam Hussain Khan et al., (2023) developed a novel malware detection framework called DSBEL, 

which used a novel SB-BR-STM (Squeezed-Boosted Boundary-Region Split-Transform-Merge) CNN 

and integrated the work. The STM block of this framework utilized various methods of extended 

convolutions, boundary and region operations to capture both homogeneous and heterogeneous global 

patterns [24]. In addition, the enhancement of initial and final level by transition learning and 

combination of various methods were utilized to identify the changing pattern. Deep SB-BR-STM CNN 

extracted discriminative features, which were then embedded into the classifier (SVM, MLP and 

AdabooSTM1) to improve the learning hybrid generalization ability. They evaluated the performance of 

the DSBEL framework and SB-BR-STM CNN using the IOT_Malware dataset and performance 

benchmarks. The results showed good performance with 98.50% accuracy, 97.12% F1-Score, 91.91% 

MCC, 95.97% recall and 98.42% accuracy. The framework proved to be powerful and useful for 

exploring terrorism opportunities and providing insights for future strategies. 

D. K. Ghaghre, G. P. Gupta et.al (2024) presented a comprehensive study on malware detection utilized 

various machine learning techniques [25]. It investigated the use of Adaboost ensemble learning, stacked 

ensemble learning, hard voting ensemble learning, and soft voting ensemble learning to solve the 

challenge of malware classification. Additionally, this paper explored feature engineering methods, 

specifically the Variance Threshold and wrapper-based forward selection, to extract relevant features 

from malware samples for effective detection. The study applied these malware detection techniques to 

the CCCS-CIC-AndMal-2020 dataset and achieved an accuracy of 99.48%. 
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Pascal Manirihoet.al (2024) introduced an improved dataset with temporal attributes, which allowed the 

evaluation of the accuracy of memory-based malware detection strategies based on the concept of drift 

(temporal data partitioning) [26]. MeMalDet uses deep autoencoders to extract the best features from the 

memory dump in an unsupervised manner, eliminate the need for manual processing. A group of 

quarantine inspectors then performed the actual malware detection. Extensive testing on our largest 

public database showed that MeMalDet maintains high performance in detecting obfuscated malware in 

time partitioning. They achieved up to 98.82% accuracy and 98.72% F1 scores in previous analyses 

without detecting advanced obfuscated malware, indicating a significant improvement in malware 

detection based on state-of-the-art identification. The improved data enabled periodic quality analysis 

and represented new sources. MeMalDet effectively combined the advantages of representation learning 

and supervised machine learning to integrate and detect malware over time through memory analysis. 

This research provided new capabilities to detect modern malware and address evolving global threats.

 

2.1 Comparative analysis of exiting malware detection and classification techniques 

Author 

& Year 

Technique 

used 

Dataset Evaluation 

metrics 

Accuracy Key features Limitation

s 

S. A. 

Roseline

, 2019 

Hybrid 

stacked multi-

layer 

integration 

Real-time 

dataset 

Accuracy 98.91% Adaptive model 

with fewer 

hyperparameters 

than deep 

learning models. 

Suitable for 

both small-scale 

and large-scale 

datasets. 

Computationall

y efficient. 

High 

dependence 

on high-

quality 

training 

data 

M. J. 

Hussain 

et al., 

2022 

Behavioral 

malware 

detection with 

ensemble 

learning 

BODMAS 

dataset 

Accuracy 99.48% 

(binary), 

92.49% 

(family) 

Two-stage 

method: binary 

classification 

and malware 

family 

identification. 

Equal weight 

assigned to 

multiple 

classifiers. 

Limited to 

the 

BODMAS 

dataset 

J. Wang 

et al., 

2022 

Multi-

classifier 

ensemble 

system 

(MCES) 

Real time 

dataset 

containing 

14,800 

malware and 

14,800 good 

Accuracy, 

Recovery 

97.54% Hierarchical 

structure with a 

base and meta-

classifier. 

Outperforms 

state-of-the-art 

Challenges 

in 

generalizin

g to new 

malware 

types. 
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samples malware 

detectors. 

M. N. 

Al-

Andoli, 

2023 

Ensemble-

based parallel 

deep learning 

classifier 

Drebin, 

NTAM, TOP-

PE, 

DikeDataset, 

ML_Android 

Accuracy, 

Recovery 

Up to 100% Combines 5 

deep learning 

models with 

PSO for 

optimization. 

Improved 

computational 

speed and 

performance by 

6.75x. 

Complexity 

in 

combining 

multiple 

deep 

learning 

models 

H. Zhu 

et al., 

2023 

Multi-system 

integration 

model 

(MEFDroid) 

Real-time 

dataset 

Accuracy 98.4% Novel fusion 

strategy 

integrating 

multiple 

representations 

and 

relationships for 

raw data. 

Outperforms 

classical 

machine 

learning 

methods. 

Considered 

limitations 

of existing 

methods but 

specifics 

not detailed 

H. 

Naeem 

et al., 

2023 

Dynamic 

analysis using 

image 

conversion 

and hybrid 

models 

Dumpware10, 

CIC-

MalMem-

2022, Real 

Knowledge of 

malware 

samples 

Accuracy 99.1% 

(Windows), 

94.3% 

(Android), 

99.8% 

(obfuscated

) 

Combines local 

and global 

descriptors with 

CNNs and 

MLPs for 

accurate 

malware 

detection. 

May not 

address all 

dynamic 

platform 

issues 

P. Bhat 

et al., 

2023 

Homogeneou

s & 

heterogeneou

s ensemble 

machine 

learning 

Real-time 

dataset 

Distributio

n rate, 

Accuracy 

98.08% Focuses on 

analyzing 

Android 

malware 

behavior with 

feature selection 

to improve 

detection 

accuracy. 

Focused on 

Android 

malware 

behaviour, 

might not 

generalize 

to all types 

of malware 
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Saddam 

Hussain 

Khan et 

al., 2023 

Novel 

DSBEL 

framework 

with SB-BR-

STM CNN 

IOT_Malwar

e dataset 

Accuracy, 

F1-Score, 

MCC, 

Recall 

98.50% Uses Squeezed-

Boosted 

Boundary-

Region Split-

Transform-

Merge CNN. 

Extracts 

homogeneous 

and 

heterogeneous 

global patterns. 

Complexity 

in the 

integration 

of multiple 

methods 

D. K. 

Ghaghre 

et al., 

2024 

Various 

ensemble 

learning 

techniques 

CCCS-CIC-

AndMal-2020 

Accuracy 99.48% Explores 

various 

ensemble 

learning 

techniques and 

feature 

extraction 

methods for 

malware 

classification. 

May not 

address all 

feature 

engineering 

challenges 

Pascal 

Maniriho 

et al., 

2024 

Deep 

autoencoders 

and stacked 

ensemble 

Largest 

public 

database  

Accuracy, 

F1-Score 

98.82% Detects 

obfuscated 

malware 

through memory 

dump analysis. 

Combines 

representation 

learning and 

supervised 

machine 

learning. 

Focused on 

memory-

based 

detection 

and may 

not address 

all 

advanced 

obfuscation 

techniques 

 

Conclusion

In conclusion, malware analysis has become a critical issue as attackers continuously evolve their 

methods, creating new forms of malware with increasingly sophisticated characteristics. Detecting 

malware before it can cause widespread harm is crucial to protecting computer systems and the internet. 

While substantial research has been conducted on malware detection techniques, accurately identifying 

malware remains a significant challenge.There are two primary methods for malware detection: 

signature-based and behavior-based. Signature-based detection is fast and efficient but only effective 

against known malware. In contrast, behavior-based detection, which leverages machine learning and 
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other advanced techniques, has the potential to identify new and complex malware. However, it remains 

a difficult approach to implement. 
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