

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 1

Innovative Integration Strategies for Platform-

as-a-Service in Large-Scale Environments

Shishir Biyyala1, Kamalendar Reddy Kotha2, Vasudev Pendyala3

1Labcorp, USA

2Dexcom Inc, USA
3Southern Illinois University - Carbondale, IL, USA

Abstract

This article presents a comprehensive examination of innovative integration strategies for Platform-as-a-

Service (PaaS) in large-scale environments, addressing the complex challenges faced by modern

enterprises in cloud computing. We explore the evolution of PaaS solutions and delve into the technical

intricacies of system integration, focusing on microservices architectures, cloud-native solutions, and

distributed systems. The article highlights critical issues such as data synchronization, API management,

and maintaining high availability across diverse subsystems. Through in-depth case studies of large

enterprise PaaS integration and hybrid cloud implementation, we derive valuable insights and best

practices. The article introduces a novel framework for seamless PaaS integration, encompassing

infrastructure abstraction, service orchestration, data integration, and API management layers.

Furthermore, we discuss emerging approaches to enhance scalability and reliability, including

autonomous scaling and multi-cloud load balancing. The article also evaluates innovative tools and

technologies aimed at improving interoperability, such as GraphQL for API integration and AI-powered

integration assistants. By analyzing future trends like edge computing integration and quantum-resistant

security, this article provides architects and developers with crucial insights for navigating the evolving

PaaS landscape, emphasizing the importance of continuous learning and cross-functional collaboration in

achieving successful large-scale PaaS integrations.

Keywords: Platform-as-a-Service (PaaS) Integration, Microservices Architecture, Cloud-Native

Solutions, Hybrid Cloud Implementation, API Management and Interoperability

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 2

I. Introduction

The rapid evolution of cloud computing has positioned Platform-as-a-Service (PaaS) as a cornerstone of

modern application development and deployment strategies. As organizations increasingly adopt PaaS

solutions to enhance scalability and flexibility, they face the complex challenge of integrating multiple

subsystems into cohesive, large-scale environments. This article explores the intricate landscape of PaaS

integration, focusing on innovative methodologies that address the technical hurdles of ensuring seamless

interoperability, scalability, and reliability across diverse platforms. By examining the integration of

microservices architectures, cloud-native solutions, and distributed systems, we delve into the critical

issues of data synchronization, API management, and maintaining high availability. Furthermore, we

investigate the unique challenges of integrating legacy systems with modern PaaS infrastructures,

including data migration, security concerns, and performance optimization. Building upon the

foundational work of Buyya et al. [1], who outlined the architectural elements of cloud platforms, our

research aims to provide a comprehensive guide for architects and developers tasked with the complex

integration of large-scale PaaS environments, offering novel solutions to enhance platform scalability and

operational efficiency.

II. Background and Related Work

A. Evolution of PaaS solutions

Platform-as-a-Service (PaaS) has evolved significantly since its inception, transforming from simple

application hosting environments to sophisticated, integrated ecosystems. Early PaaS offerings focused

primarily on providing developers with managed runtime environments and basic services. However, as

cloud technologies matured, PaaS solutions expanded to encompass a wider range of services, including

database management, API gateways, and DevOps tools [2]. This evolution has been driven by the

increasing demand for more flexible, scalable, and efficient application development and deployment

processes. Modern PaaS platforms now offer comprehensive tools and services that support the entire

application lifecycle, from development and testing to deployment and maintenance.

B. Current challenges in PaaS integration

Despite the advancements in PaaS technologies, organizations face numerous challenges when integrating

these solutions into their existing IT infrastructures. One of the primary obstacles is ensuring seamless

interoperability between diverse PaaS components and legacy systems. Data consistency across different

services and platforms remains a significant concern, particularly in distributed environments. Security

and compliance issues also pose substantial challenges, especially when integrating cloud-based PaaS

solutions with on-premises systems [3]. Furthermore, the complexity of managing multiple PaaS

environments, each with its own set of tools and APIs, can lead to increased operational overhead and

potential performance bottlenecks.

C. Review of existing integration methodologies

Various methodologies have been proposed to address the challenges of PaaS integration. Service-oriented

architecture (SOA) principles have been widely adopted to facilitate interoperability between different

components. API-led connectivity has emerged as a popular approach, enabling more flexible and modular

integration strategies. Container orchestration platforms, such as Kubernetes, have also played a crucial

role in simplifying the deployment and management of applications across multiple PaaS environments

[4]. Additionally, event-driven architectures and serverless computing models are gaining traction as

methods to enhance scalability and reduce integration complexity in PaaS ecosystems.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 3

Challenge Description Proposed Solution

Data

Synchronization

Maintaining consistency across

multiple services and databases

Implement event-driven architectures and

change data capture (CDC) mechanisms

API Management Managing multiple APIs across

various PaaS subsystems

Deploy comprehensive API gateway

solutions

High Availability Ensuring consistent uptime across

diverse environments

Implement robust monitoring, automated

failover, and self-healing capabilities

Legacy System

Integration

Integrating outdated systems with

modern PaaS infrastructure

Adopt incremental migration strategies and

implement secure API gateways

Scalability Managing resource allocation in

dynamic environments

Utilize autonomous scaling and multi-

cloud load balancing

Table 1: Comparison of PaaS Integration Challenges and Solutions [5-7]

III. Key Components of Large-Scale PaaS Integration

A. Microservices architectures

Microservices architectures have become fundamental to large-scale PaaS integration, offering a modular

approach to application design and deployment. By decomposing applications into smaller, independently

deployable services, microservices enable greater flexibility, scalability, and fault isolation. This

architectural style facilitates easier integration of diverse PaaS components by promoting loose coupling

and service independence. However, implementing microservices in a PaaS environment also introduces

challenges related to service discovery, inter-service communication, and data consistency, which must

be carefully addressed in the integration strategy.

B. Cloud-native solutions

Cloud-native solutions form another critical component of modern PaaS integration strategies. These

technologies, designed specifically for cloud environments, leverage containerization, orchestration, and

automated scaling to optimize application performance and resource utilization. Cloud-native approaches

enable organizations to fully exploit the benefits of PaaS platforms, such as elasticity and rapid

deployment. Integration of cloud-native solutions often involves adopting practices like continuous

integration and continuous deployment (CI/CD), infrastructure as code, and automated testing, which

collectively enhance the agility and reliability of PaaS environments.

C. Distributed systems

The integration of distributed systems is essential for creating robust, scalable PaaS environments.

Distributed architectures allow for the efficient allocation of resources across multiple nodes or data

centers, improving performance and reliability. However, integrating distributed systems in a PaaS context

presents unique challenges, including maintaining data consistency, managing network latency, and

ensuring system-wide fault tolerance. Techniques such as distributed caching, eventual consistency

models, and consensus algorithms play crucial roles in addressing these challenges and facilitating

seamless integration of distributed components within PaaS ecosystems.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 4

Layer Function Key Technologies Benefits

Infrastructure

Abstraction

Provides unified

interface for resource

management

Container orchestration

(e.g., Kubernetes, Docker

Swarm, etc.)

Simplifies resource

allocation across diverse

environments

Service

Orchestration

Manages deployment

and lifecycle of services

Microservices, Serverless

computing

Enhances flexibility and

scalability

Data Integration Ensures consistent data

management and access

ETL tools, Data replication

mechanisms

Improves data consistency

and accessibility

Data

Serialization

Schema evolution, cross-

language support, and

performance.

Apache Avro, Google

Protocol Buffers (Protobuf),

and Apache Thrift

Determining long-term

platform and integration

efficiencies.

API

Management

Standardizes API

development and

governance

API gateways (e.g.,

Amazon API Gateway,

Tyk, etc.), GraphQL

Enhances interoperability

and security

Table 2: Key Components of the Proposed PaaS Integration Framework [5]

IV. Technical Challenges in PaaS Integration

A. Data synchronization across subsystems

One of the most significant challenges in PaaS integration is maintaining data consistency and

synchronization across diverse subsystems. As applications become increasingly distributed, ensuring that

data remains consistent across multiple services, databases, and caches becomes complex. Eventual

consistency models are often employed, but they introduce challenges in managing data conflicts and

reconciliation [5]. Real-time synchronization mechanisms, such as change data capture (CDC) and event-

driven architectures, are being adopted to mitigate these issues. However, implementing these solutions

in heterogeneous PaaS environments requires careful consideration of network latencies, data volumes,

and the specific consistency requirements of each application component.

B. API management and interoperability

Effective API management is crucial for seamless PaaS integration, facilitating communication between

different services and components. However, managing a multitude of APIs across various PaaS

subsystems presents significant challenges. These include version control, security enforcement, and

performance optimization. Implementing a comprehensive API gateway solution has become a common

practice to address these issues, providing a centralized point for API management, monitoring, and policy

enforcement [6]. Ensuring interoperability between different API standards and protocols is another

critical challenge, often requiring the implementation of adapters or middleware solutions to bridge

incompatibilities between legacy and modern systems.

C. Maintaining high availability in diverse environments

Maintaining high availability across a diverse PaaS ecosystem is a complex task that requires addressing

multiple factors. Load balancing, fault tolerance, and disaster recovery mechanisms must be implemented

consistently across different PaaS components and geographical regions. The challenge is further

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 5

compounded by the need to manage varying service level agreements (SLAs) and performance

characteristics of different PaaS providers or subsystems. Implementing robust monitoring, automated

failover, and self-healing capabilities are essential strategies for maintaining high availability. However,

these must be carefully designed to work cohesively across the entire PaaS landscape, often requiring

custom integration work to ensure seamless operation [7].

V. Integrating Legacy Systems with Modern PaaS Infrastructures

A. Data migration strategies

Integrating legacy systems with modern PaaS infrastructures often necessitates comprehensive data

migration strategies. This process involves moving data and transforming it to fit new data models and

schemas. Strategies such as incremental migration, where data is moved in phases, and dual-write systems,

which maintain data consistency during transition periods, are commonly employed. However, these

approaches must be tailored to the specific requirements of each legacy system and PaaS environment.

Challenges include managing data integrity during migration, handling large volumes of historical data,

and ensuring minimal disruption to ongoing operations. Tools and techniques like ETL (Extract,

Transform, Load) processes, data replication, and automated validation mechanisms play crucial roles in

successful data migration strategies.

B. Security considerations

Security is a paramount concern when integrating legacy systems with modern PaaS infrastructures.

Legacy systems often have outdated security protocols that may not align with the robust security

requirements of modern cloud environments. Key challenges include implementing consistent identity

and access management across old and new systems, ensuring data encryption both at rest and in transit,

and maintaining compliance with current regulatory standards. Strategies to address these issues include

implementing secure API gateways, utilizing virtual private networks (VPNs) or dedicated connections

for sensitive data transfer, and employing comprehensive security information and event management

(SIEM) systems to monitor and detect potential security threats across the integrated environment.

C. Performance optimization techniques

Optimizing performance in a hybrid environment of legacy systems and modern PaaS infrastructure

requires a multifaceted approach. Techniques include implementing caching mechanisms to reduce

latency, optimizing database queries and indexing strategies, and leveraging content delivery networks

(CDNs) for improved data access speeds. In many cases, refactoring parts of legacy applications to take

advantage of PaaS scalability features is necessary. This might involve breaking monolithic applications

into microservices or implementing serverless functions for specific processes. Additionally, employing

performance monitoring and analytics tools across both legacy and PaaS components is crucial for

identifying bottlenecks and optimizing resource allocation dynamically.

VI. Case Studies

A. Case study 1: Large enterprise PaaS integration

A multinational financial services corporation undertook a significant PaaS integration project to

modernize its global transaction processing system. The project involved integrating a new cloud-native

PaaS solution with existing on-premises infrastructure. Key challenges included ensuring data consistency

across multiple regions, maintaining strict regulatory compliance, and minimizing downtime during the

transition. The company implemented a phased approach, utilizing a combination of microservices

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 6

architecture and event-driven design patterns. This strategy allowed for gradual migration of services

while maintaining interoperability between old and new systems. The project resulted in a 40% reduction

in transaction processing time and improved scalability to handle peak loads [8].

B. Case study 2: Hybrid cloud PaaS implementation

A healthcare technology provider implemented a hybrid cloud PaaS solution to enhance its patient data

management system. The goal was to leverage public cloud resources for non-sensitive data processing

while keeping sensitive patient information on-premises. The integration involved creating a unified data

access layer that spanned both environments, implementing strong encryption and access controls, and

ensuring seamless application deployment across the hybrid infrastructure. The company utilized

containerization technologies and a service mesh architecture to manage the complexity of the hybrid

environment. This approach resulted in improved data accessibility for healthcare providers, enhanced

security compliance, and a 30% reduction in overall infrastructure costs [9].

C. Lessons learned and best practices

These case studies highlight several key lessons and best practices for PaaS integration:

1. Adopt a phased approach to minimize disruption and manage risks effectively.

2. Implement robust data governance and security measures from the outset.

3. Utilize containerization and microservices architectures to enhance flexibility and scalability.

4. Invest in comprehensive monitoring and observability tools across the entire integrated environment.

5. Prioritize API standardization and management to ensure smooth interoperability.

6. Conduct thorough performance testing at each integration phase to identify and address bottlenecks

early.

Fig 1: Performance Improvement in Case Studies [8,9]

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 7

VII. Innovative Integration Methodologies

A. Proposed framework for seamless PaaS integration

We propose a comprehensive framework for seamless PaaS integration based on the challenges and

lessons learned from case studies. This framework consists of four key layers:

1. Infrastructure Abstraction Layer: Provides a unified interface for managing resources across

diverse PaaS environments.

2. Service Orchestration Layer: Manages the deployment, scaling, and lifecycle of services across the

integrated platform.

3. Data Integration Layer: Ensures consistent data management, synchronization, and access across all

subsystems.

4. API Management Layer: Standardizes API development, security, and governance across the entire

ecosystem.

This layered approach allows for modular development and integration, enabling organizations to adapt

to changing requirements and technologies more efficiently [10].

B. Novel approaches to scalability and reliability

Emerging approaches to enhance scalability and reliability in integrated PaaS environments include:

1. Autonomous scaling: Utilizing AI and machine learning algorithms to predict resource needs and

automatically adjust scaling parameters.

2. Multi-cloud load balancing: Implementing intelligent traffic routing across multiple cloud providers

to optimize performance and costs.

3. Chaos engineering for PaaS: Applying principles of chaos engineering to test and improve the

resilience of integrated PaaS environments.

4. Serverless integration patterns: Leveraging serverless computing to build highly scalable and cost-

effective integration solutions.

C. Tools and technologies for enhanced interoperability

Several innovative tools and technologies are emerging to address interoperability challenges in PaaS

integration:

1. GraphQL for API integration: Utilizing GraphQL as a flexible query language for APIs, reducing

over-fetching and under-fetching of data.

2. Service mesh technologies: Implementing service mesh solutions like Istio or Linkerd to manage

service-to-service communication in complex microservices architectures.

3. Event-driven integration platforms: Adopting platforms that facilitate real-time, event-driven

integration across diverse PaaS environments.

4. AI-powered integration assistants: Leveraging AI to automate aspects of integration, such as data

mapping and transformation [11].

Data Serialization for Efficient Integration

An often overlooked but crucial aspect of PaaS integration is the choice of data serialization format.

Technologies such as Apache Avro, Google Protocol Buffers (Protobuf), and Apache Thrift play a

significant role in determining long-term platform and integration efficiencies. These serialization formats

offer different trade-offs in terms of schema evolution, cross-language support, and performance [13].

Apache Avro provides rich data structures and a compact, fast, binary data format. It's particularly well-

suited for systems with dynamic schemas and excels in big data processing scenarios. Google Protobuf

offers excellent performance and is language-neutral, making it ideal for cross-platform applications.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 8

Apache Thrift, developed by Facebook, provides a scalable cross-language framework for service

development and is known for its efficiency in handling large data sets.

The choice of serialization format can significantly impact data transfer speeds, storage efficiency, and

the ability to evolve schemas over time. For instance, in a case study of a large-scale IoT platform

integration, switching from JSON to Protocol Buffers resulted in a 30% reduction in data transfer times

and a 40% decrease in storage requirements [13].

As shown in Fig 2, the adoption of these serialization technologies is steadily increasing, with Protobuf

leading due to its performance benefits and language neutrality. Organizations undertaking PaaS

integration should carefully evaluate these options based on their specific use cases, considering factors

such as schema flexibility, language support, and performance requirements.

Fig 2: Adoption Rates of PaaS Integration Technologies (2020-2024) [10,11,13]

VIII. Discussion

A. Comparative analysis of integration strategies

Different integration strategies offer varying benefits and trade-offs. API-led connectivity provides

flexibility but may introduce complexity in large-scale implementations. Event-driven architectures offer

real-time capabilities but require careful management of event consistency. Microservices-based

integration enhances modularity but can increase operational complexity. The choice of strategy should

be based on specific organizational needs, existing infrastructure, and long-term goals.

B. Future trends in PaaS integration

Emerging trends in PaaS integration include:

1. Edge computing integration: Extending PaaS capabilities to edge locations for improved

performance and data locality.

2. AI-driven integration and optimization: Utilizing artificial intelligence for automated integration,

performance tuning, and anomaly detection.

3. Blockchain for secure multi-party integration: Leveraging blockchain technologies to ensure trust

and transparency in complex, multi-organization PaaS integrations.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 9

4. Quantum-resistant security integration: Preparing PaaS environments for the era of quantum

computing by integrating quantum-resistant cryptography [12].

C. Implications for architects and developers

The evolving landscape of PaaS integration has significant implications for IT professionals:

1. Continuous learning: The rapid pace of technological change necessitates ongoing skill development

in areas such as cloud-native technologies, AI, and advanced security practices.

2. Cross-functional collaboration: Successful PaaS integration requires close collaboration between

development, operations, security, and business teams.

3. Architectural flexibility: Architects must design systems that can adapt to changing integration

requirements and emerging technologies.

4. Security-first mindset: With increasing complexity in integrated environments, security

considerations must be at the forefront of all design and development decisions.

IX. Conclusion

In conclusion, the integration of Platform-as-a-Service solutions in large-scale environments presents a

complex yet crucial challenge for modern enterprises. This paper has explored the multifaceted nature of

PaaS integration, from the evolution of PaaS solutions to the intricate technical challenges faced during

implementation. Through comprehensive case studies, we have illustrated the real-world applications and

outcomes of innovative integration strategies. The proposed framework for seamless PaaS integration,

coupled with novel approaches to scalability, reliability, and interoperability, offers a robust foundation

for organizations embarking on complex integration projects. As the landscape of cloud computing

continues to evolve, the future of PaaS integration points towards increased automation, AI-driven

optimizations, and a greater focus on edge computing and quantum-resistant security measures. For

architects and developers, this evolving ecosystem demands continuous learning, cross-functional

collaboration, and a security-first mindset. By embracing these innovative methodologies and staying

attuned to emerging trends, organizations can leverage PaaS integration to achieve unprecedented levels

of scalability, efficiency, and competitive advantage in the digital era.

References

1. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, "Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility," Future Generation

Computer Systems, vol. 25, no. 6, pp. 599-616, 2009. [Online]. Available:

https://doi.org/10.1016/j.future.2008.12.001

2. C. Pahl, P. Jamshidi, and O. Zimmermann, "Architectural Principles for Cloud Software," ACM

Transactions on Internet Technology, vol. 18, no. 2, pp. 1-23, 2018. [Online]. Available:

https://doi.org/10.1145/3104028

3. A. Botta, W. de Donato, V. Persico, and A. Pescapé, "Integration of Cloud computing and Internet of

Things: A survey," Future Generation Computer Systems, vol. 56, pp. 684-700, 2016. [Online].

Available: https://doi.org/10.1016/j.future.2015.09.021

4. N. Kratzke and P.-C. Quint, "Understanding cloud-native applications after 10 years of cloud

computing - A systematic mapping study," Journal of Systems and Software, vol. 126, pp. 1-16, 2017.

[Online]. Available: https://doi.org/10.1016/j.jss.2017.01.001

5. P. Viotti and M. Vukolić, "Consistency in Non-Transactional Distributed Storage Systems," ACM

https://www.ijfmr.com/
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1145/3104028
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.jss.2017.01.001

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240630203 Volume 6, Issue 6, November-December 2024 10

Computing Surveys, vol. 49, no. 1, pp. 1-34, 2016. [Online]. Available:

https://doi.org/10.1145/2926965

6. Lytra, Ioanna & Sobernig, Stefan & Tran, Huy & Zdun, Uwe. (2012). A Pattern Language for Service-

Based Platform Integration and Adaptation. ACM International Conference Proceeding Series.

10.1145/2602928.2603080. [Online]. Available: https://dl.acm.org/doi/10.1145/2602928.2603080

7. M. Armbrust et al., "A view of cloud computing," Communications of the ACM, vol. 53, no. 4, pp.

50-58, 2010. [Online]. Available: https://doi.org/10.1145/1721654.1721672

8. A. Balalaie, A. Heydarnoori, and P. Jamshidi, "Microservices Architecture Enables DevOps:

Migration to a Cloud-Native Architecture," IEEE Software, vol. 33, no. 3, pp. 42-52, 2016. [Online].

Available: https://doi.org/10.1109/MS.2016.64

9. R. Mahmud, K. Ramamohanarao, and R. Buyya, "Latency-aware Application Module Management

for Fog Computing Environments," ACM Transactions on Internet Technology, vol. 19, no. 1, pp. 1-

21, 2018. [Online]. Available: https://doi.org/10.1145/3186592

10. N. Dragoni et al., "Microservices: Yesterday, Today, and Tomorrow," in Present and Ulterior Software

Engineering, Springer, Cham, 2017, pp. 195-216. [Online]. Available: https://doi.org/10.1007/978-3-

319-67425-4_12

11. M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan, "Osmotic Computing: A New Paradigm for

Edge/Cloud Integration," IEEE Cloud Computing, vol. 3, no. 6, pp. 76-83, 2016. [Online]. Available:

https://doi.org/10.1109/MCC.2016.124

https://www.ijfmr.com/
https://doi.org/10.1145/2926965
https://dl.acm.org/doi/10.1145/2602928.2603080
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1145/3186592
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MCC.2016.124

