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Abstract 

This paper presents new framework for predictive health monitoring in palm trees using advanced deep 

learning methods. The system then selects the YOLOv8 method for the detection of the health of palm 

trees and further divides them into their real-time classification. Here, the model will, after training on its 

dataset, classify the palm tree as healthy, diseased, and stressed trees, keeping all the influential factors of 

the growth of the palm tree in consideration. It makes provision for the profiling of health status by way 

of early intervention, reducing risks and preventing diseases with a view to optimizing crop yields within 

palm plantations. 

The proposed model leverages state-of-the-art methodologies in object detection to process images of the 

palm tree with identification of key indicators of health issues. This approach has great implications for 

agricultural productivity in view of the maintenance of plant health through early detection. Further, the 

paper discusses challenges presented during the training and validation of the model, their strategies for 

overcoming such obstacles, and goes further into relating details to the technical architecture of the model. 

Further details on the works related to plant disease detection, image-based classification, and further 

applications of deep learning in agriculture have inspired the research work. Based on the obtained results, 

it can be observed that the proposed system provides a scalable and efficient solution for continuous 

monitoring and assessment of the health conditions of palm trees, hence enabling sustainable agricultural 

practices. 

 

Keywords: Palm Tree Health Monitoring, YOLOv8 Deep Learning, Real-Time Agricultural Monitoring 

 

1. Introduction 

Health and productivity are important features to be taken into account for agriculture; in this case, for 

extensive plantation, there is a need for the early detection of diseases and environmental stress in order 

to prevent great yield loss. Among the key crops in the agricultural industry, palm trees stand out, 

especially oil palms (Elaeis guineensis), which provide resources for palm oil. However, their productivity 
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may be seriously diminished by various diseases and other environmental stresses that go undetected until 

such time as irreversible damage has occurred. Traditional monitoring of plant health involves labour and 

is time-consuming; thus, the need for effective and scalable methods is immediate. In the light of this fact, 

the predictive health monitoring systems, coupled with the latest in machine learning, have become a 

promising tool for the auto-detection of health issues in crops by allowing timely intervention. (Mahlein, 

2016; Rumpf et al., 2010) 

Deep learning has been applied to many areas, including agriculture, where the number of image-based 

classification systems for plant disease detection is increasing. (Kamilaris & Prenafeta-Boldú, 2018). 

Systems for such purposes use large datasets and complex algorithms to detect and identify the status of 

a plant health condition with high accuracy. Probably the most effective real-time object detection 

approaches make use of the YOLO algorithm (Redmon & Farhadi, 2018), since drawing on its reception 

is really widespread due to its balanced trade-off between speed and accuracy in image recognition tasks.  

Recent improvements in this algorithm, especially YOLOv8, enable the best fit in agricultural areas where 

identification has to be quick and proper. In this paper, the potential of YOLOv8 is harnessed in developing 

an efficient system for monitoring palm tree health, hence providing a very scalable and effective method 

for the plantations. Recently, deep learning in plant health monitoring has taken great momentum; hence, 

a number of works proved its potency in performing better compared to traditional machine learning 

models. One of the recent works on plant disease detection using CNN was conducted by Ferentinos, 

2018, for which the accuracy was very good. 

Similarly, Liu et al. (2017) demonstrated that deep learning models can classify diseases of tomatoes and 

are thus extendable to a wide variety of crops. Based on such results, the approach proposed here for health 

monitoring in palm trees employs deep learning in order to classify palm trees into three different health-

level classes - healthy, diseased, or stressed - whilst considering the plethora of environmental factors 

affecting the growth of this important resource crop. It develops a custom dataset matching the peculiar 

features of palm trees. This is one of the major contributions of the work, since the height of palms, the 

structure of its canopy, and the variety of its diseases make them so different from other crops, which need 

a special identification system upon infection. This uniqueness makes most of the existing datasets fit for 

detection and classification in this context. 

Because of this problem, the dataset used in this work takes into consideration through all growth stages 

and health conditions of palm trees that the model should be preliminary trained with diverse and 

representative data. This approach enhances the early detection of diseases, but at the same time, it also 

enables carrying out application of models in different plantation environments. Goh et al., 2020). It should 

target a real-time health monitoring system of palm trees that is scalable and accurate, distinguishing 

between a healthy, diseased, and stressed tree for the creation of a custom dataset. Fine-tuned YOLOv8 is 

used in this paper to realize the target. This will bring a full change in agricultural practices by allowing 

continuous monitoring and timely interventions, hence contributing to better crop management and 

sustainability. 

 

2. Objective 

The following work describes the design and development of a robust and scalable system for real-time 

health monitoring of palm trees using state-of-the-art deep learning techniques. It is focused on applying 

the YOLOv8 object detection algorithm to achieve accurate object detection and classification of the 

health status of every individual palm tree in order to classify the trees into categories of healthy, diseased, 
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or stressed. It would be trained on the model using a personally created dataset representing various health 

conditions of palm trees across diverse environments. This would automate the identification of potential 

issues within these plantations by allowing early interventions that can mitigate diseases, crop yield 

management, and reduce dependency on manual labor in monitoring at agricultural levels. 

It will also provide the missing link in the existing models of plant disease detection and their application 

to palm tree health specifically. While there has been significant progress in developing the models in 

general crop monitoring, the palm tree - an immensely economically important crop in the tropics - has 

received little attention. This work tries to fill this gap by providing a scalable yet pretty precise solution 

that can be deployed industrially over large areas of palm oil plantations and will go a long way in 

promoting efficient farming and sustainable agriculture. If the system will be in a position to work 

successfully, then it has to provide the foundation for further development related to agricultural 

monitoring for better disease management and enhancement of productivity. 

 

3. Literature Review 

The various plant disease detection techniques using imaging sensors have been an area of increasing 

interest lately. According to Mahlein (2016), the increasing demands of precision agriculture and plant 

phenotyping were topics discussed in his presentation. Advanced imaging processing methods were 

identified to identify symptoms, which are 'specific' to diseases, that may be highly relevant for real-time 

agricultural monitoring. This study opened the way for advanced exploration of the machine learning and 

deep learning techniques in plant health monitoring. 

Kamilaris and Prenafeta-Boldú (2018) conducted an extensive survey on the approaches of deep learning 

in agriculture and gave an overview of the usage of these techniques on disease detection, yield prediction, 

and phenotyping. Their work has identified the benefits of deep learning to handle large and complex sets 

of agricultural data in coming up with more accurate and scalable solutions. Additionally, in their ranking 

of top essential object detection algorithms in agriculture, a proper balance between speed and accuracy 

is identified to be YOLO. 

Another highly valued work is that of Ferentinos (2018) applied deep convolution neural networks to plant 

disease detection in as many as 58 diverse plant species with high classification accuracy. This work 

proved the robustness of CNN models in the detection of plant diseases, hence further cementing the 

potential of deep learning in improving agricultural monitoring. Ferentinos' work particularly highlighted 

that a large, well-annotated dataset is required for improving the performance of such models—a limitation 

now addressed in this research by using a custom dataset of palm trees. 

Rumpf et al. (2010) used machine vision systems for the early detection of diseases in plants, with 

approaches based on multispectral imaging. Though the approach was more or less traditional, it gave a 

way forward to the application of advanced machine learning algorithms toward agriculture. Their study 

highlights how early detection of disease could significantly improve crop management practices through 

timely interventions. The findings are related to the purpose of the current study, which is improvement 

in disease detection using real-time object detection methods. 

In addition, regarding YOLO-based applications, Redmon and Farhadi (2018) suggested YOLOv3, an 

algorithm that increased accuracy in object detection by a bound without compromising performance in 

real time. This made YOLO an attractive choice in agricultural applications where monitoring should be 

done in real time. Hence, their work is the basis for the proposed system. This work adopted YOLOv8 in 

detecting palm tree health status and represented better performance regarding accuracy. 
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Concerning diseases on the leaves, Liu et al. (2017) also showed the efficiencies of deep learning methods, 

especially CNN, in identifying diseases on apple leaves. As their study has shown, "the accuracy of the 

deep learning model was more than 95% while traditional image processing technique methods were far 

less accurate." This work has reinforced the use of advanced neural networks in agricultural disease 

detection, and similar models have been applied in the current research in relation to health issues in palm 

trees. 

Goh et al. (2020) discussed specific management with regards to diseases in palm trees, highlighting some 

of the key challenges brought about by height and complicated structure, making the conventional methods 

of monitoring ineffective. This study, therefore, called for specific datasets and methods tailored according 

to the specific characteristics of the palm tree. As such, this has been an important consideration in 

developing the custom dataset used in the present study. 

A review article by Shrivastava and Singh (2020) aimed at studying object detection methods in 

agriculture, with a focus on applying YOLO for detecting crop diseases. This study again established that 

YOLO has a bright future in both effective and rapid detection of plant health issues, pointing out that 

real-time detection systems may constitute a sea change in crop management studies. Most importantly, 

their findings directly motivate the application of YOLOv8 in this present research to ensure that 

monitoring of plantations, no matter how big they could get, is efficiently done. 

Pantazi, Moshou, and Bochtis (2020) discussed some of the applications of machine learning algorithms 

in precision agriculture, notably in crop disease detection and weed detection. Their results showed that 

deep learning models significantly enhance plant health issue detection when combined with multispectral 

imaging. That corresponds to the interest of current research, which also tries to improve the health 

monitoring of palm trees by state-of-the-art deep learning techniques and custom-made datasets. 

Finally, Ramcharan et al (2017). realized cassava disease detection by means of deep learning using 

smartphone-based systems. Though applied on smallholder farms, their work was able to show the full 

value of mobile platforms for real-time disease detection. This essentially underscores the potential 

scalability of deep learning-based health monitoring systems—one of the key objectives of the present 

research. 

 

4. Methodology 

The methodology for this research focuses on developing a robust system for palm tree health monitoring, 

leveraging the YOLOv8 (You Only Look Once) object detection algorithm. The process is divided into 

several stages: data collection and preparation, model selection, training and validation, and performance 

evaluation. This methodology ensures a systematic approach to automating the detection and classification 

of palm tree health conditions. 

4.1. Data Collection and Preprocessing: The first remediable course of action that this procedure entails 

is collecting a custom-made dataset that has pictures of palm trees from different regions and different 

health statuses (healthy, diseased, stressed). Such images are further annotated with the bounding boxes 

and are labeled with the respective health states. Pre-processing is important in adjusting the data in 

readiness for training by making sure that each image is resized and augmented for instance by rotation, 

scaling, and flipping to enhance the generalization of the model. All studies have shown that deep learning 

models for various agricultural applications have been limited by the datasets (Mohanty, Hughes, & 

Salathé, 2016; Fuentes et al., 2017). 

4.2. Model Selection: E.C.O.P. lived up to its promise when it was deployed in activity monitoring setti- 
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ngs that were very crucial in the monitoring of agriculture on a large scale. The one-stage classifier 

architecture of YOLO is characterized by impressive speed and good accuracy, hence the feasibility of 

tree health condition monitoring in real time. The model requires only a single forward pass through the 

input image, making it less computationally intensive than models employing several passes such as Faster 

R-CNN. Yu and Cord, implemented YOLOv3, implemented these ideas and improved results in both 

detection and detection speed, which is optimal for the given use (Redmon & Farhadi, 2018). Different 

plant disease detection problems have been showcased using YOLO based architecture which proves its 

effectiveness in the field of agriculture (Zhou et al., 2019). 

4.3. Model Training and Validation: To achieve this, the last step is collecting the dataset in which we 

have all the images inside and prepare the images annotated with bounding boxes and use it to train the 

YOLOv8 model based on supervised learning. Hence, it includes the classification loss, the localization 

loss, and the loss of concern of the object, all of which help the model learn not only what class to predict 

but also where in the picture the bounding boxes lie with regard to the respective class. In this case, a 

cognitive and transfer learning method was used where the target YOLOv8 neural network was re-trained 

on the original palm tree datasets subjected to a Yolo-tuning process. Transfer learning accelerates 

convergence and improves model performance by leveraging knowledge learned from general object 

detection tasks (Kamilaris & Prenafeta-Boldú, 2018). The model is validated using a separate subset of 

the data to ensure it generalizes well to unseen images. 

4.4. Evaluation Metrics: The output of the trained model is evaluated using different types of object 

detection metrics, such as precision, recall, mean Average Precision (mAP@0.5) and the F1 score. It is 

also noted that precision is the capacity of the palm tree classifier to accurately classify diseases of palm 

trees that have been detected, while recall is the ratio of the amount of true positive palm trees out of all 

palm trees present within the boundaries of the examined image. Mean Average Precision at the specific 

Intersection over Union thresholds (mAP@0.5, mAP@0.5:0.95) represents the summation of the results 

and provides the most precise characterization of the model’s accuracy in both localization and 

classification tasks. Three performance metrics, precision, recall and F1, are given where recall and F1 

are more useful in cases where the healthy vs diseased tree classes are highly unbalanced (Xie, Ma & Liu 

2020). What dominates the model performance metrics is the emphasis put on evaluation, detection and 

classification of palm tree health condition through the adoption of the stated metric systems. 

4.5. Deployment and Application: After training and validation, the model in this case is integrated in a 

real-time application that captures and analyzes aerial or drone images of large farm plantations. The 

system provides a health status to palm trees through regular assessments and advice to farmers and 

managers of plantations so that diseases or stresses are treated as soon as they are noticed. This real-time 

deployment strategy aligns with recent advancements in precision agriculture, where deep learning models 

have shown promise in improving yield management and disease control (Sambasivam & Opiyo, 2021). 

 

5. Architecture 

The architecture of YOLOv8-based model for palm tree health detection can be broken down into several 

components, each playing a critical role in the overall functionality of the system. The model architecture 

is designed to process input images and detect the health status of palm trees by drawing bounding boxes 

around them and classifying each as either healthy or diseased. 
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Figure 1: Predictive Health Monitoring System for Palm Trees Architecture

 
5.1. Model Architecture: 

Input Layer: The input to the model consists of images captured from drones or cameras. These images 

are preprocessed, resized, and normalized to match the required input size for the YOLOv8 model. The 

typical input size for YOLOv8 is 640x640 pixels. 

Backbone (Feature Extraction): YOLOv8 applies a convolutional neural network (CNN) for feature 

extraction which serves as the backbone. The width, height and depth feature named backbone extracts 

different features from the input image including the fans, shape and stance of palm trees including 

diseases. The backbone of YOLOv8 has been designed with both speed and accuracy in mind with 
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CSPDarknet as the main feature. It increases the extraction of deep feature maps into the subsequent layers 

for the information gathering for object detection. 

Neck (Feature Aggregation): The neck of the YOLOv8 model aggregates feature maps from different 

layers of the backbone. It uses a Feature Pyramid Network (FPN) to combine low-level and high-level 

features, ensuring that the model is capable of detecting objects of different scales, including small regions 

of disease or abnormalities on the palm trees. This stage helps refine the features that are passed to the 

detection layers. 

Head (Detection and Classification): The task of object detection belongs to the head section of the 

YOLOv8 model. It draws bounding boxes around the detected objects (palm trees) and also gives a 

confidence estimation to each detection along with a health classification of the tree. Predictions in 

YOLOv8 are made at three levels of scale, which enhances the model's performance in predicting objects, 

which is necessary for disease detection on palm trees with different aggressiveness. 

Bounding Box Regression: The model predicts the coordinates (x, y, width, height) of the bounding boxes 

that enclose the detected palm trees. 

Class Prediction: The model assigns a class (healthy, diseased) to each detected tree. 

Confidence Score: A confidence score indicates the likelihood that the detection is correct. 

Non-Maximum Suppression (NMS): Stakes are rather high at this stage of the analysis and interpretation 

because, on making the predictions for the palm trees, YOLOv8 applies an algorithm (called non-

maximum suppression) to remove duplicate overlapping rectangular detection boxes. In this way, several 

rectangular boxes do not surround a single object, avoiding overlap and false positives. 

Output: On practical application of the said method, the final output becomes an image, which has been 

captured of palm trees with bounding boxes drawn around them, labelling the bounding boxes with the 

health status including its strengths (e.g. healthy, diseased) and specificity to the level of invasion). This 

output is useful in visualization as well as alert system setup where palm plantations can be monitored in 

real time. 

 

6. Dataset Overview 

The dataset employed in the current research is Oil Palm Detection dataset (version 6) and was obtained 

from Roboflow, a popular dataset management and model training application. This dataset consists of a 

total of 9,751 images each containing palm trees with bounding boxes. These images are aerial shots of 

palm trees taken from different perspectives in various weather conditions, thus providing a diverse dataset 

which is advantageous in the training of deep learning algorithms such as the YOLOv8 which aims to 

identify and grade the health status of palm trees at the individual tree level. 

6.1. Data Distribution and Split: The dataset is distributed in three different categories: 

• Training Set: A total of 8,532 images (87% of the total number of images) are used to train the 

YOLOv8 model. During training, the image conditions in the training set cover different health 

statuses and environments of palm trees proactively, making the model well performed in real-life 

scenarios. 

• Validation Set: This subset comprises 813 images (8% of the total number of images) and is used in 

model training to optimize hyperparameters and control overfitting. 

• Test Set: The last 406 images (4% of the total number of images) are used to assess how the model 

performs on previously unseen data to guarantee a good fit of the model in real life. 

6.2. Image Labels: Then in every image included in the dataset, there is a label indicating the condition  
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of the palms. These labels contain the delimitation of the areas of interest which treated palms are located. 

The bounding box annotations are in a YOLO format, which contains x, y coordinates of a target along 

with its width height pair and its class (healthy, diseased etc). By using such annotations, the YOLOv8 

model can be trained to detect palm trees and classify them within a single stage. 

6.3. Preprocessing and Augmentation: No explicit preprocessing was done a priori on the dataset for 

training, with images retaining their natural variability. To make the model more robust, several 

augmentations were performed during training: 

• Flip (Vertical): Images were flipped vertically to enhance the generalization of the model from one 

orientation to another. 

• Rotation:  Every image passed through a random rotation between -10° to +10°, simulating a lot of 

angles which the camera usually starts on during the actual implementation practice for this type of 

surveillance system.  

• Brightness and Exposure Adjustments: The brightness and exposure are modified up to a factor 

between -17% and + 17%, taking into consideration the performance of the working model dealing 

with different light conditions.  

6.4. Importance of Dataset: It would be highly feasible to train a deep learning model using this dataset 

for generalization to real-world scenarios on palm plantations due to its diversity in environmental 

conditions, trees' structure, and health status. This is further facilitated by this dataset through the 

introduction of data augmentation with well-labeled bounding boxes that ensure high-accuracy detection 

and classification of palm trees under many scenarios that lead to eventual predictive health monitoring in 

large-scale agricultural settings. 

 

7. Distinctive Aspects of This Research 

While many studies have been conducted on plant disease detection and health monitoring using the deep 

learning techniques, most of these are concentrated on crops like tomato, wheat, and other usually highly 

cultivated plants (Fuentes et al., 2017; Mohanty, Hughes, & Salathé, 2016). These models are fit in their 

respective domains. However, they are usually restricted to training datasets available for a specific plant 

or disease and might not generalize well on other crops, such as palm trees. Indeed, palm trees—especially 

those standing in huge plantations of palm oil production—have some unique challenges to present due to 

height, which results in an aerial perspective, bringing difficulties to manual detection from an overhead 

image of the trees showing early signs of disease.  

This research differs from typical models ensembled using general crops; it focuses strictly on palm trees 

and generates a specialized deep learning framework matching the peculiar characteristics of palm tree 

health monitoring. In contrast to previous approaches, most of which utilize general object detection 

algorithms, the presented research uses recent improvements included in the YOLOv8 object detection 

architecture targeted for real-time detection over large-scale environments. Fine-tuning of YOLOv8 using 

our dataset of images of palm trees thus enables the study to improve possible shortcomings in similar 

previous works that fail to meet real-time monitoring demands over wide plantations. Furthermore, the 

high-quality and well-annotated images of palm trees in different states of health will include healthy, 

diseased, and stressed trees, giving our model the capability of more precise differentiation between subtle 

tree health state changes. Integration of several domain-specific augmentation techniques, such as 

exposure and brightness variations, allows the model to perform well under changing environmental 

conditions, improving over most other works.  
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Contrary to previous works that aimed at the identification of specific diseases, this research develops an 

early detection for a range of health conditions in palm trees, making sure that interventions would be 

timely (Xie, Ma, & Liu, 2020). The deployment in real-time monitoring of the model contrasts with static 

or offline approaches undertaken by other studies. It is such a practical approach to large-scale agriculture 

in terms of the detection and classification of palm tree health, thereby providing actionable insights that 

prevent the wastage of manual labor in large-scale plantation yields. 

 

8. Results and Discussion 

The proposed model was trained and evaluated using the Oil Palm Detection dataset, which is divided into 

three subsets: a training set, a validation set, and a test set. The training set contained 8,532 images, while 

the validation and test sets consisted of 813 and 406 images, respectively. All images were annotated with 

bounding boxes representing the detected palm trees. The model was supposed to classify each detected 

palm tree into a specific health condition. 

 

Figure 2: Training of dataset 

 
The results of the training phase show that the YOLOv8 model was able to effectively learn to detect palm 

trees from the training data, as evidenced by the accurate bounding box predictions in the visual outputs. 

In Figure 2, the training images demonstrate that the model successfully detected and classified multiple 

palm trees in varying conditions, including trees obscured by shadows or vegetation. The bounding boxes 

are tight and accurately aligned with the tree canopies, indicating high precision in object localization. The 

consistency in detection across different image qualities and angles further demonstrates the robustness of 

the YOLOv8 model when trained on an augmented dataset. 

 

Figure 3: Validation of dataset 

 
During the validation phase, as shown in Figure 3, the model continued to perform well, though there were 

minor cases of overlapping bounding boxes in densely vegetated areas. Despite these challenges, the 

model was still able to correctly detect the majority of palm trees with high confidence. This indicates that 

the model's generalization capabilities are strong, as it can handle new data without significant 

performance degradation. The ability to detect and classify trees under various lighting and environmental 
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conditions showcases the effectiveness of the data augmentation techniques, including vertical flipping 

and brightness adjustments. 

 

Figure 4: Testing of dataset 

 
The results from the test set, as illustrated in Figure 4, provide further evidence of the model’s accuracy 

in real-world applications. The test images include more challenging cases such as trees that are partially 

hidden by other foliage or captured from angles that were less prevalent in the training set. Even in these 

cases, the model successfully detected the majority of palm trees, with precise bounding boxes and 

appropriate classifications. The mAP@0.5 metric from the test set evaluation revealed a satisfactory 

performance level, indicating that the model could be deployed for large-scale real-time monitoring in 

palm oil plantations. 

 

Figure 5: Detection of Palm Tree 

 
 

Prediction Results: 

The displayed test images illustrate the model's capacity to detect palm trees across a variety of 

environmental conditions and perspectives. The bounding boxes, as shown in the images, align well with 
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the actual locations of the palm trees in the aerial views. These bounding boxes represent the palm trees 

detected by the model, with the model correctly identifying the number of trees in each image. 

1. Bounding Box Alignment: 

The bounding boxes are well-fitted around the palm trees, showing that the model has successfully 

localized the trees. Even in densely vegetated regions, where multiple palm trees are located close together, 

the model managed to detect individual trees and provide clear boundaries. The majority of the boxes are 

tightly aligned with the outer edges of the tree canopies, which demonstrates the model's precision. 

2. Handling of Varied Perspectives: 

The images come from various angles and lighting conditions, which test the generalizability of the model. 

The performance of the model is satisfactory even for images in which there are shadows and/or trees are 

occluded by buildings and other trees as well. The only few cases of bounding box obliviation may stem 

from trees-over-planting in those regions which is an aspect of object detection that presents difficulties. 

However, all but one of the predictions are expected to efficiently ‘wrap’ individual trees. 

3. Challenges with Dense Regions: 

In the casses with a dense canopy structure in which threes are relatively closer to one another, bounding 

boxes have been observed to be drawn over some trees. Not this, however, would affect for the worse the 

performance of the model. The model is still capable of identifying a large proportion of trees in these 

situations, which showcases good robustness in difficult circumstances. 

4. False Positives and Negatives: 

In some test images, it is conceivable that the model may have generated a few false positives (positional 

false detection of trees) or some of the trees have been missed by the model in heavy density or darkness. 

This is a very common issue in object detection models as well where there are complex backgrounds or 

low light settings. 

 

Figure 6: Model Performance 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240630492 Volume 6, Issue 6, November-December 2024 12 

 

 
Model Performance Evaluation: 

Standard object detection metrics such as precision, recall, F1 score, and mean Average Precision mAP 

have been employed in assessing the performance of the model. These measurements enhance the alacrity 

in determining the palm tree detection and classification capability of the model based on the aerial images. 

Key evaluation measures obtained are as follows: 

• Precision: 0.8555 

• Recall: 0.8908 

• F1 Score: 0.8728 

• mAP@0.5: 0.5565 

• mAP@0.5:0.95: 0.5565 

Precision, Recall, and F1 Score: The precision of the model, as illustrated in the chart, indicates that 

85.55% of the trees detected by the model were correctly classified as palm trees. A high precision value 

implies that there are very few false positive in the model, which indicates that it is performing well in 

actual palm trees recognition only. The recall score of 89.08% stipulates that most of the palm trees that 

were there in the image were correctly identified by the model. This shows strength in the model of 

reducing false negatives where a large fraction of the palm trees observed in the test data were easily 

noticed. 

The F1 score, which is a balanced harmonic mean of precision and recall, stands at 0.8702. This high score 

reflects the overall performance of the model in detecting and classifying palm trees successfully with a 

reasonable balance between precision and recall. A higher F1 score indicates the ability of the model in 

both heads, which is important in practice as it is crucial for monitoring the health of palm trees not to 

miss any tree or misclassify an object that could cause problems.  

Mean Average Precision (mAP): The mAP scores are particularly important in evaluating the 

localization accuracy of the detected objects (palm trees). The mAP@0.5 is 0.5565, which measures the 

model’s accuracy when a strict Intersection over Union (IoU) threshold of 50% is applied. Similarly, the 

mAP@0.5:0.95 is 0.5565, which evaluates the model across a range of IoU thresholds, providing a more 

comprehensive evaluation of the model’s ability to correctly locate palm trees in varying conditions. 

The relatively lower mAP scores compared to precision and recall indicate that while the model is good 

at identifying trees and reducing false positives, there is room for improvement in the localization of trees, 
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particularly in dense regions or where trees overlap. The model may benefit from further fine-tuning or 

using higher resolution images for training to increase its localization accuracy, particularly when multiple 

palm trees are close together. 

Discussion: Overall results indicate that the YOLOv8 is effective in locating and identifying the palm 

trees in aerial images. The achieved precision and recall are very high proving that the model is able to 

find trees without too many false positives and false negatives. The mAP metrics however imply that 

effective object localization in difficult scenarios especially with multiple palm tree clusters or in 

situations where trees are blocked by shadows or other elements requires enhancement. 

These results highlight the model’s potential for use in real-world agricultural monitoring systems, where 

early and accurate detection of palm trees can facilitate better crop management and disease prevention 

strategies. Further improvements could be made by fine-tuning the model on more complex and diverse 

datasets or applying advanced post-processing techniques to improve the accuracy of bounding box 

predictions. 

 

Figure 7: Precision-Recall Curve 

 
Analysis of Precision-Recall Curve: 

Figure shows the instance of Precision-Recall Curve which illustrates the tradeoff between precision and 

recall for palm tree detection in YOLOv8 model at various thresholds. This is helpful where evaluation of 

the model is against imbalanced dataset where there are two or more classes dominating some (such as 

healthy palm trees) and where the cost of false negative or false positive is large. 

In this curve: 

• The x-axis being the recall value which assesses the number of true positives accumulated by the 

model. Recall goes high if more palm trees are being detected, albeit with the risk of false positives. 

• The y-axis being the precision, which indicates how many objects above threshold were actually 

positive out of all objects above that threshold. Higher precision simply means that the number of false 

positives is reduced among the positive detection of objects (palm trees). 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240630492 Volume 6, Issue 6, November-December 2024 14 

 

Key Observations: 

1. High Initial Precision: At very low recall values e.g. 0.0 and around 0.1, precision walks at a high 

value close to 1.0 indicating that the model was at this time very certain of the few detections it made. 

This high precision means that during the early parts of detection, the model does not provide many 

predictions but only the most relevant and confident, which leads to fewer or no false positives. 

2. Trade-off Between Precision and Recall: Looking at Figure 7, as recall increments (for values above 

0.2), precision scantily holds. As seen, this comes as a natural trade-off in most models: as recall is 

increased (or the model classifies more positives), then more negatives are also falsely classified 

leading to decreased precision. Such a phenomenon is customary in object detection tasks where it is 

imperative to increase recall but unfortunately brings in some increase that should have been excluded. 

3. Fluctuations in the Curve: The precision curve, on the other hand, has a notable hang time at the 

range of 0.2 to 0.8, then drops a little flatter. Such shifts are tended to indicate that the effectiveness 

of the model is not necessarily consistent across all levels of detection performance and that some 

levels are hard more than others. Such causes of fluctuation may be related to the nature of the 

complexity of the palm nodes that are present improbable areas where the palms are clustered or 

overlapped; the model is likely to not capable of differentiating tree after tree. In this manner, any 

different threshold will create different levels of trade-offs between both precision and recall. 

4. Decreasing Precision at High Recall: For recall equals to 1.0, it can be inferred that there is great 

imbalance in maintaining the precision rate, which then slips to levels between .60 and .70. This also 

means that when most of the palm trees are being detected it is at the expense of a high false positive 

rate of the detected trees. This scenario is well experienced in object detection models especially the 

ones deployed in the real world, as the models have to strike a trade-off between the number of 

detections and the number of incorrect detections. 

This precision-recall curve shows how effectively the model is able to find palm trees with respect to 

models, while also noting the ramifications of changing the cut off value for precision and recall. In case 

agricultural monitoring systems are developed, the operating thresholds may depend on which is more 

important, under reporting (talented in recall) or over reporting (talented in precision). There is a clear 

indication that although the model can achieve these precision rates at lower recall levels, the well 

performance and stability at other extreme points may still be achievable through additional modifying 

steps of the colony forming units in light of dense trees/sparse trees/poor imagery. 

 

Figure 8: Mean Average Precision 
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Mean Average Precision (mAP) Across IoU Thresholds: 

Figure 8 depicts the performance of the model in terms of mean Average Precision (mAP) with respect to 

different levels of Intersection over Union (IoU), ranging from 0.5 to 0.95. The mAP metric evaluates how 

precise the predicted bounding box is by measuring the overlap between the predicted bounding boxes 

and the ground-truth bounding boxes. 

• x-axis: epresents the IoU thresholds. IoU shows how much the predicted and actual bounding boxes 

overlap. This means that the predicted bounding box should overlap with the correct bounding box 

within a defined range, otherwise it will be considered to be incorrect. 

• y-axis: Represents the mAP scores which show the average precision for a model in all classes at a 

particular IoU threshold. 

Key Observations: 

1. Steady mAP Increase with Higher IoU Thresholds: It can be seen in the plot that there is increase 

in mean average precision as the IoU threshold increases where the mAP score is highest at 0.95 IoU. 

This means that the model is less accurate at lenient IoU thresholds (where the overlap between 

predicted and corrected bounding boxes does not have to be tight) with 0.85 mAP, and matures at the 

most accurate 0.95 IoU cutting the ground by a whopping 0.85 mAP. This suggests that the model 

could manage to make accurate bounding boxes on many detections, thus high overlap of prediction 

and the ground. 

2. Variation at Lower IoU Thresholds: For lower IoU thresholds (0.5-0.7), noticeable differences in 

mAP results are recorded, with drops occurring at 0.6 and 0.7 IoU. This variation in performance might 

be in cases when the model predicts bounding boxes that are correct but are not fit well, particularly 

with images whose parts overlaps with dense palm trees. This fluctuation also shows that the model is 

more reliable in high IoU thresholds than in low thresholds. 

3. Improvement Beyond IoU 0.7: When the IoU thresholds exceed 0.7, the effect of IoU on the mAP 

tends to plateau, and increase, steadily - confirming that the model’s predictions are improving towards 

optimal boxes. This is a good sign for use cases that necessitate accuracy because the model can 

generate reasonably accurate bounding-boxes around palm trees but may have problems with 

overlapping palms as in this case. 

 

Discussion: The increasing mAP margin at high IoU thresholds reveals the model’s ability to locate palm 

trees and orient bounding boxes to the actual target accurately. In contrast, the fluctuations at lower 

thresholds indicate that certain factors may be limiting the performance in more dense or complicated 

cases where the ascribed boxes are not close enough to the actual perimeter. Additional model refinement 

or methods employed after model refinement (Non-Maximum Suppression tuning, for instance) may 

mitigate the atypical fluctuations seen at lower thresholds. 

In practical applications, depending on the required precision, this model shows that it can provide highly 

accurate detections for scenarios where a strict overlap between predicted and actual bounding boxes is 

necessary. This is critical for health monitoring in agriculture, where precise detection of palm trees allows 

for better assessment and management of tree conditions. 
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Figure 9: Training and Validation Loss Curves 

 
Training and Validation Loss Curves Analysis: 

The plot above shows the Training and Validation Loss curves for the YOLOv8 model over 20 epochs, 

providing insights into how well the model learned from the training data and how it generalized to unseen 

data. The loss function measures how well the model’s predictions align with the actual labels (bounding 

boxes and class predictions). The loss curves are crucial for understanding the model’s performance during 

training and for identifying any overfitting or underfitting. 

Key Observations: 

1. Training Loss Decrease: The loss during training, indicated by the yellow solid line, is also lowering 

with time, all the twenty epochs. This means that it is possible to make better predictions on the training 

data than it was possible initially, which means there is learning going on. From the beginning of the 

process, loss showing some gentle slumping is indicative that the model is changing the weights to 

reduce errors as per the training objectives. When the training period is over, it can be observed that 

the training loss goes to very low values, which means the model did quite well on training data. 

2. Validation Loss Behavior: The behavior of validation loss represented by the dashed red line also 

improves with epochs, but at a much slower rate than the training loss. It tends to be higher than the 

training loss for the other epochs and does not improve at any time during the training. This is quite 

normal and the reason is that this loss is applied to data that the model has not been trained on which 

is why it is normal to expect a drop in performance in relation to the training set. 

3. No Significant Overfitting: The most important thing is the absence of a substantial gap between the 

training loss and the validation loss plots, which in turn suggests that overfitting is not a problem that 

needs to be dealt with. If overfitting were a factor in the picture, one would expect to see such 

phenomenon as the validation loss starting to go up with training loss getting lower, meaning that the 

model becomes ‘too familiar’ with the training data and fails in most cases to cope with out of the-

sample data. The relatively close alignment of the two curves implies that the model is generalizing 

well and can handle unseen data effectively. 

4. Validation Loss Fluctuations: A staggering change is evident in validation loss observed at epoch 5 

and epoch 15. This indicates that there are difficulties the model will have with some of the validation 

samples. This may be because of some difficult images in the validation set, such as crowded palm 

trees in the image, or palm trees that are partly obscured by other objects. Even these fluctuations 
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experienced in the validation loss trend are downward which mean that some improvement in the 

model is still taking place over time. 

As depicted by the training and the validation loss curves, the model has been trained well with no critical 

overfitting features displayed. The same patterns of constant decrease of the loss values signify that the 

model is able to extract relevant information from the training dataset and to apply it to other images from 

the validation dataset. While the test loss was greater than the training loss (which is normal), there was 

no further divergence between them, indicating that the model is neither too weak nor too strong for the 

palm trees detection task. This balancing act enables the model to be applied in real agricultural monitoring 

systems where new data is always presented to the model especially palm trees which will be in varying 

attributes. 

 

Figure 10: Classification 

 
 

Model Performance and Results Explanation: 

The pictures presented are the results of the application of the model to the training datasets, underlining 

its performance in detecting and recognizing such entities as healthy palm trees, banana trees, nitrogen 

deficiencies, and other such categories (cattle, ganoderma, etc.) contained in the relevant pictures. The 

output of the model also highlights images of the objects that were enclosed in the invisible screens 

categorizing them according to what each picture depicts. 

Key Points for Discussion: 

1. Multi-Class Detection: The model has shown the capabilities of detecting and distinguishing multiple 

classes at the same time. These classes are healthy palm trees, banana trees, trees with nutrients 

nitrogen deficiency among other classes. The model also whenever certain images appear is able to 

identify even other elements such as cattle, which volumetrically enhances the number of elements 

that can be identified within agricultural images. The high concentration of enumerated objects 

indicates that so far, the model is able to be fully trained to detect and classify palm trees blended with 

other types of crops and their nutrient status. 

2. Bounding Box Precision: The annotation is complete, and the bounding boxes demarcate the image 

segments for each object, with the class prediction offered in a label. For example, in some cases, the 
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model correctly identifies palms exhibiting nitrogen starvation by tagging them as nitrogen, nitrogen 

trees, or other such. The relatively close-fitting bounding boxes indicate that the model is capable 

enough to localize the objects with reasonable accuracy. However, there are however instances of box 

overlap in regions covered by trees or dense vegetation, for example healthy palm and banana trees 

with their wrappers. This might indicate some difficulties in object detection when they are bunched 

up together, which probably will be fixed in the later iterations of the model. 

3. Health Monitoring: One of the advantages of this model is the determination of healthy trees that 

may probably need some care including nitrogen deficiency. This concern doesn’t seem to be highly 

realized in the images where trees such as those labeled nitrogen are seen where nutrient deficiency 

will compromise crop yield. This feature renders the model capable of managing farms in an 

agricultural setting on a broader scale since some of the nutrients may need to be corrected early on 

before it gets too late. 

4. Classification Consistency: Even when viewed in multiple images, the model is able to classify trees 

and other objects appropriately, and labels them consistently. For instance, healthy trees are correctly 

identified and not confused with those that are unhealthy. Such a model suggests that there is good 

learning of the different image styles whether denser forested images or open images are captured. 

However, in some image’s certain trees such as banana, nitrogen and so on are represented by wrong 

labels, where there is most likely some room for improvement, particularly on extensive areas packed 

with many trees. 

5. Challenges with Dense Areas: In highly dense regions, especially in the presence of overlapping 

canopies, the model shows some difficulty in distinguishing between trees. In some cases, some of the 

overlapping boundaries imply that specific trees may have been missed, or cannot be classified 

correctly due to their proximity to multiple other trees. This is a wonderful coping strategy to an ugly 

problem in the object detection models that utilize agricultural landscapes, and can be fixed at a later 

stage with more tuning and/or processing, such as employing better ways of Non-Maximum 

Suppressive (NMS) for dense areas. 

The results from these images demonstrate that the model based on YOLOv8 is good at finding and 

recognizing several classes of trees and objects in palm tree plantations. It can also be highlighted the 

capability of identifying healthy trees, trees that are lacking for instance nitrogen or other important trees 

like banana trees or cattle including other such trees. It is therefore evident that the model is appropriate 

for practical use in monitoring agricultural activities as well. The information gained through the model 

can potentially aid in decision making on the management of large plantation estates. 

Regardless of the positive statistics achieved so far, some aspects of the model’s performance especially 

in certain areas are still lacking, a case where overlapping objects creates a problem of classification. With 

more work being done especially in the optimization and internalization of the model so as to 

accommodate the detection of packed objects, this could be an even more useful asset in large- area 

agricultural monitoring with reasonable and relevant actionable visions on crops management and health 

assessment. 
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Figure 11: Heatmap 

 
Heatmap Analysis of Train Dataset: 

The above heat map image explains the object density (such as palm trees, banana trees, and other features) 

from the training dataset of the palm tree detection model. The heatmap is placed on the original image 

and the denser the bounding box frequency in a particular area the redder it is. This visualization offers 

valuable insights into the distribution and localization of objects across the image. 

Key Observations: 

1. Bounding Box Density: As it is evident from the previous heat maps and hot point maps there are 

regions with higher number of object(s) detected as compared to others attesting to the higher red 

regions on the maps. Such regions are where multiple bounding boxes are located, for example clusters 

of palm trees or other relevant objects that form a coherent assembly in an agricultural landscape. The 

model is also able to localize the detected objects over smaller regions correctly. This is evident in the 

cases where the trees are planted on their certain areas of the plantation close to each other. 

2. Object Localization and Distribution: The regions of the heatmap that are the light coloured are 

those that are less in density or entirely void of any object. Such areas can be considered to be either 

empty or devoid of any significant vegetation. The difference in red color, level as one sees all over 

the image entails the ability of the model to tell apart areas with numerous objects e.g. palm trees and 

without. This is an important feature of the model, as it can help tell the differences between heavily 

wooded areas and clear land used for farming activities. 

3. Performance in Dense Areas: In this case, the heatmap helps indicate that the model is able to 

perform well in high density areas. The darker regions, where several bounding boxes overlap, show 

that the model is able to identify and also categorise multiple trees or objects within a small area. This 

is useful in practical scenario such as agricultural surveillance where the healthy growth of a plantation 

can be effectively assessed through finding individual trees even in thick congested areas. 
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4. Potential for Refinement in Sparse Areas: On the other hand, while the heatmap illustrated clearly 

sane reason for performance in dense regions, areas without covering more light intensity (fewer 

detections) mean that there are objects in detection zones that the model seems to have neglected 

locating. Such a situation could occur because the model was uncomfortable identifying objects within 

sparse or ‘cleaner’ areas where the visual features of the objects to be detected are minimal. More 

models’ refinements on these specific areas could be the leaning more towards making the model 

aggressive towards detecting the relatively less densely populated objects. 

5. Model Robustness for Agricultural Monitoring: Figure 11 presents a heat map of the relative 

location in a farming landscape which has capacity for surveillance by the specific model. This model 

is therefore very appropriate for monitoring large areas of agriculture since it can accurately detect and 

describe objects in critical areas as well as classify areas depending on their density. The heat maps 

may be useful in evaluating the variation of detection performance of the model around the farm to 

ensure all the trees, whether scattered or salivated, are captured on camera. 

This density map enables a clear picture of the performance bias in the model with an emphasis on 

detecting regions with a horde of palm trees and other objects. A significant proportion of the model 

detects such objects in places with very high density where a greater percentage of bounding boxes are 

seen overlapping. This ability is critical in the management of extensive agricultural systems since 

plantations would be planted closely and timely action taken when there is a problem with the crop will 

enhance its management practices. Nevertheless, the model could be enhanced further to maximize 

detection in areas low on plants. The heat map results give an indication that the model is almost there in 

becoming a useful real time monitoring device for agriculture and in particular palm tree health evaluation. 

 

Figure 12: Object Count 

 
Object Count Analysis for Train Dataset: 

The content of the given bar chart presents the distribution of the number of annotated objects on the 

various object classes in the Train Dataset. The x-axis carries the name of the object classes illustrated 

(banana, cattle, ganoderma, healthy, nitrogen, young), while number of objects in each object class 

indicated on the y-axis. 

Key Observations: 

1. Dominance of Healthy Trees: It is striking to note from this chart that the range of the numbers of  
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objects annotating healthy palm trees outnumbers all others. This implies that most palm trees data 

captured during the training phase are healthy, which elicits good results in terms of crop diseases in 

regard to palm trees. This suggests that the model has been presumably developed in a way to easily 

classify healthy palm trees because such trees constitute the majority of such datasets. 

2. Low Count for Nitrogen Deficiency: The number of objects has been reported to be few as “nitrogen” 

which could suggest some trees that were observed to be nitrogen deficient, such trees being demand 

for nitrogen. While the model can tell the trees that are lack nitrogen, such trees are presumably not so 

many available in the training data. This may either reflect true distributions in the dataset or imply 

that nitrogen-deficient trees training examples are perhaps not enough for thai model to perform better 

in the nutrient deficiency detection tasks. 

3. Presence of Banana Trees: Figure 1 depicts a lack of banana trees which seems to be a small number 

even when the counting is done centrally. This shows that the model is capable of identifying different 

species within the dataset, which is important in mixed-crop plantations. The detection of the same 

banana trees with palm trees enables one to appreciate the distribution of landed property and farming 

practices in such settings 

4. Classes with No Detections: There are some classes like cattle, ganoderma and young trees that are 

either not in the dataset or were not detected in the random image. This could mean that these classes 

are either rare or not there in the training dataset which may hinder the model from detecting these 

objects in practical situations. This may require some further data collection and training to enhance 

their detection in the concerned classes.  

The object count chart indicates helps estimates how objects were distributed in the dataset, in terms of 

their detected risk. The reason for such a high percentage of healthy trees is the ability of the model in 

palm plantation health monitoring which is mainly the focus of this study. Although, so few number of 

nitrogen deficient trees were identified by the model indicated that most likely more training data is 

required in order to improve the model’s ability to detect nutrient deficit. 

 

9. Summary 

In this study, a new model was built based on the YOLOv8 architecture deep learning model which 

provided an effective monitoring of palm tree health. The model was able to learn how to detect and 

classify objects in the agricultural aerial images using a large dataset which consisted of healthy palm 

trees, banana trees and trees deficient of nitrogen, among others. The model was further able to carry out 

real-time object detection to classify the conditions of the different trees and to detect where interventions 

would be needed in extensive plantations. 

The experimental results showed that the model performed well in classifying the most abundant tree 

subtype, which is healthy trees, although it was also able to detect banana trees and nutrient deficient 

conditions. Using heatmaps and object count distributions as well as other methods managed to assess the 

model where it demonstrated good localization and classification of objects regardless of density. Finally, 

the model showed precision and recall mAP scores which are promising results for agriculturally based 

problems and the model can be deployed in the practical field. These results underscore the model's utility 

in aiding plantation management, where early detection of health issues can be critical to optimizing crop 

yield and ensuring sustainable agricultural practices. 
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10. Conclusion 

In conclusion, the findings presented in this research have effectively expressed protentional use of deep 

learning models, more specifically YOLOv8, for automating palm trees health monitoring in an 

agricultural setting. The model also offers practical solutions to the management of the challenges such as 

spotting deficiencies in crops, through accurate classification of palms, bananas, or crops and monitoring 

large plantations for signs of crop deficiency. It is very critical for efficient farm operation management, 

as corrective measures can be instituted at the correct time improving the harvest and minimizing all crop 

loss that results from diseases or deficiency of nutrients. 

Still, although the results achieved by the model are satisfactory regardless of its norms, some changes 

can be made for gaining better results. In particular, the available dataset should be increased and include 

rare or underrepresented examples such as trees deficient on nitrogen or young trees so that the robust of 

the model as well as monitoring within different agricultural settings is achieved. In addition, improving 

the performance of the model’s detection of cluttered areas may help solve any remaining issues with 

misclassification. Future research should focus on optimizing these areas to develop a more 

comprehensive monitoring system that can be applied across various agricultural landscapes, ensuring that 

the system remains a reliable tool for enhancing crop productivity and sustainability. 
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