

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

The Effect of Static Stretching and Proprioceptive Neuromuscular Facilitation Stretching in Reducing Delayed Onset Muscle Soreness Among Adults: A Systematic Review

Ishfaq Bashir Bhat¹, Anis Elina Shazwani Binti Mohd Nadzri²

¹Lecturer, IIUM ²Student, IIUM

ABSTRACT

Stretching is typically done as part of a warm-up regimen before training or competition to improve muscle flexibility, and performance and prevent DOMS. Stretching techniques include static, ballistic and proprioceptive neuromuscular facilitation (PNF). Limited data supports the effectiveness of static and PNF stretching in reducing DOMS, despite its perceived ease and safety. Studies indicate stretching had an impact on the decrease of DOMS following physical activity. Additionally, other studies indicate that static and PNF stretching may reduce lower limb performance and may not be effective in reducing DOMS. Thus, this research sought to identify the effect of static and PNF stretching in reducing DOMS among adults. Using online databases such as PubMed, PEDro, The Cochrane Library, and ScienceDirect, a thorough search of the English-language literature was carried out for publications published between 2013 and 2023. Seven relevant articles for review have been identified using these databases. Randomized control trial studies in which the participants were adult population, used static stretching or/and PNF stretching as an intervention and outcomes on perceived muscle soreness and range of motion were included in this review. Subsequently, the publications went through screening based on their abstracts and titles and PICOS criteria were used to assess each article's eligibility. Following that, RoB2 tools were used to evaluate the papers' risk of bias. The information was then examined descriptively. The result of this systematic review study showed that there is a positive effect of static stretching in reducing DOMS among adults. However, the effect of PNF stretching in reducing DOMS among healthy adults is still inconclusive due to the limited number of randomized control trial studies on PNF stretching being conducted.

BACKGROUND OF THE STUDY

Delayed onset muscle soreness (DOMS) is characterized by delayed muscular discomfort, stiffness, loss of muscle force generation capability, decreased joint range of motion (ROM) and diminished proprioceptive function. The inflammation that follows the microtrauma to the muscles is assumed to be the cause of the soreness (Sonkodi et al., 2020). DOMS can disrupt daily activities, athletes' performance, and the ability of people who are not accustomed to exercise to continue exercising for fitness (Mizumura & Taguchi, 2015). DOMS is one of the most prevalent causes of decreased muscle

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

performance in sports and it is related with pain and a reduction in ROM and muscle strength. It is common in both professional and recreational players (Hotfiel et al., 2017).

Researchers have found mixed results when it comes to the benefits of stretching. In healthy adults, muscle stretching does not significantly reduce delayed-onset muscle soreness after exercising (Herbert et al., 2011). Zulaini et al. (2021) had done a study and the findings revealed that stretching and recovery had an effect on the decrease of DOMS following physical exercise.

This study aims to address a gap in knowledge by examining and offering insights into the efficacy of various stretching strategies for minimizing DOMS. Current literature provides conflicting conclusions and is devoid of thorough evidence regarding the efficacy of static and PNF stretching in reducing DOMS among healthy adults. By providing a better understanding of the potential benefits or drawbacks of static and PNF stretching in lowering DOMS, this study seeks to fill this knowledge gap and enlighten researchers and practitioners in the field.

Prodromal calf soreness was experienced by about 20% of patients prior to calf damage (Fields & Rigby, 2016). By reviewing the existing RCT study regarding the effect of static and PNF stretching in lowering DOMS in healthy adults, this study aims to close this knowledge gap and offer useful guidance for practitioners and individuals alike on how to best tailor their stretching regimens for improved muscle recovery. The effect of static and PNF stretching on perceived muscle soreness and ROM will be thoroughly studied through relevant papers or studies.

Regular physical activity and sports have long been recognized for their health advantages. However, exercise can also cause fatigue and damage to the muscles or can be associated with delayed onset muscle soreness (DOMS). It can result in discomfort and stiffness in the muscles that lasts from hours to days following an unusual exercise regimen that mostly consists of eccentric contractions (Ozmen et. al., 2017). DOMS tend to cause pain, decrease muscle strength and joint range of motion (ROM), which can hinder exercise performance while also making daily activities more difficult to perform (Sadacharan & Seo, 2021). In essence, examining the effect of stretching on muscle soreness advances scientific understanding and benefits multiple facets of human health, including recovery, fitness, and general health concerns. It also addresses practical issues associated with exercise. Hence, this systematic review intends to collect evidence regarding the effects of static and PNF stretching on the reduction of DOMS among healthy adults.

Muscle soreness that is severe or persistent may discourage people from engaging in regular physical activity, especially for athletes or fitness enthusiasts which could have an impact on their fitness objectives and general health. Afonso et al. (2021) mentioned that stretching is often recommended to alleviate the symptoms of DOMS following physical exertion. Therefore, this research sought to identify the effects of two different type of stretching which are static and PNF stretching on the reduction of DOMS.

Static stretching is a frequent warm-up technique intended to increase the ROM and possibly avoid injuries (Takeuchi & Nakamura, 2020). Static stretching entails bringing single or many joints to the limit of their ROM through active contraction of the muscles that are acting as agonists or through the use of external forces such as the force of gravity, other people or stretching devices such as stretch bands. In the final position, the individual keeps the muscle extended for a predetermined amount of time (Chaabene et al., 2019). For most people, static stretching should be done two to three times a week accompanied by an active warm-up, in accordance with the American College of Sports Medicine (2023). Hold each stretch for 15-30 seconds and repeat two to four times (Steber, 2022).

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@jjfmr.com

Bernhart (2013) stated that there are two main ways to do static stretching which are active and passive. Active stretching happens when the individual uses their own muscles to hold the stretch position. This type is better for improving active flexibility. Passive stretching involves an outside force holding the stretch for the individual, like an object or another person. With passive stretching, it is unnecessary to contract the opposing muscle while stretching. In active static stretching, the opposing muscle groups are contracted through reciprocal inhibition, while in passive static stretching, both the antagonist and agonist muscles might relax during the stretch.

Shaha et al. (2021) mentioned that PNF is being used in clinical settings by physiotherapists to regain functional ROM and build strength in patients who are suffering soft tissue damage. The contract-relax method (CR) and the contract-relax-antagonist-contract method (CRAC) of PNF appear much more frequently in the scientific research than others.

The CR method required the individual to lengthen the target muscle (TM) and hold that position while contracting the TM to its fullest isometrically for a specified duration. This was often accompanied by a brief relaxation of TM that included a passive stretch (Shaha et al., 2021).

The CRAC method used the same procedures as the CR technique but went one step further. In lieu of just stretching the TM passively, the individual contracted the antagonist muscle for the remaining time. When used in combination with exercise, PNF stretching is also believed to improve muscular performance. It has been shown to boost muscular performance when done after or without exercise for at least two sets of PNF every week (Howell, 2018).

METHODOLOGY 3.1 METHODOLOGY

The systematic review approach was implemented in this research project. The systematic review consists of several components which incorporate formulation of research question, establishing inclusion and exclusion criteria, strategy for searching, searching databases, registering protocols, creating titles, abstracts, screening full texts, manually searching, extracting data, quality assessment, data verification, statistical analysis, double data verification, and writing manuscripts (Mohamed Tawfik et al., 2019). A guideline to conduct systematic review which follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was employed. The PRISMA guideline is divided into four steps which are identification, screening, eligibility and included the pertinent studies which can be illustrated in Figure 3.1.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

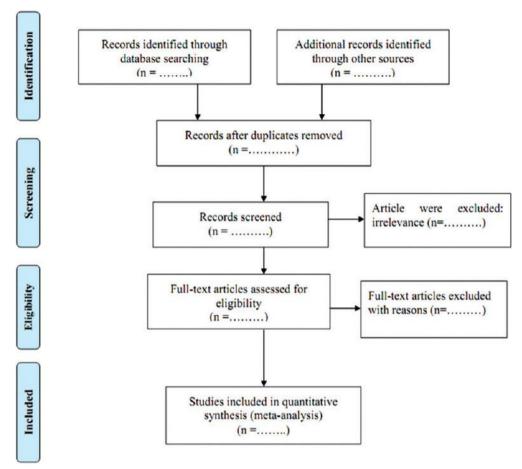


Figure 3.1: Screening process and articles selection according to the PRISMA Guidelines

3.2 SEARCH STRATEGY AND IDENTIFICATION

Online databases such as PubMed, Physiotherapy Evidence Database (PEDro), The Cochrane Library and ScienceDirect databases was utilized to look for the relevant studies. The Boolean Operators, which are simple terms like 'AND,' 'OR,' and 'NOT,' was employed in the search process. The specific keywords was used to identify the relevant articles related to the study such as 'static stretching' OR 'proprioceptive neuromuscular facilitation stretching' OR 'PNF stretching' 'contract relax stretching' OR 'hold relax stretching' OR 'stretching' AND 'delayed onset muscle soreness' OR 'muscle soreness' AND 'adults'. The identified studies were documented.

3.3 SCREENING

The screening process of the journals' title, abstract and the full text was conducted hinged on the inclusion and exclusion criteria, as shown in Table 6.2. After screening the research paper or article, it was decided whether to include or exclude the study. The article that was still pertinent to the objective of the study and research question were reviewed. The unrelated articles that have been excluded were based on exclusion criteria and the rationale for the articles' exclusion will be illustrated in Table 3.3.

Table 3.3 Inclusion and Exclusion Criteria

Inclusion Criteria
Studies involved adults, aged between 18 to 50 years old
Studies that used stretching exercise included static and/or PNF stretching

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Studies that used perceived muscle soreness and/or range of motion as outcome measures

Studies with randomized control trial study

Studies that are written in the English language

Studies published from 2013 and above

Exclusion Criteria

Studies with systematic literature reviews and qualitative studies design

3.4 ELIGIBILITY CRITERIA

Problem, Intervention, Comparison, Outcome and Study (PICOS) criteria was employed to assess the eligibility of the research paper that have been prescreened. The PICOS criteria are stated in Table 3.4.

Table 3.4 PICOS Criteria

PICOS Criteria	
Population (P)	Adults
Intervention (I)	Static stretching, PNF stretching
Control (C)	No stretching
Outcome (O)	Perceived muscle soreness, Range of motion of any part of the body
Study Design (S)	Randomized control trial study

3.5 QUALITY ASSESSMENT/ RISK OF BIAS

For the purpose of obtaining more accurate and pertinent data, the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2) was utilized as a risk-of-bias assessment tool prior to reporting the results of the study. Randomized trials can benefit from this tool when assessing potential biases. Five domains have been included in this instrument: 1) the procedure of randomization; 2) sixteen deviations from planned interventions; 3) missing result data; 4) outcome measurement; and 5) the selection of reported outcomes.

3.6 REPORTING RESULT/ DATA EXTRACTION

All the data extracted was defined priori. By constructing a table, it was easier to gather information regarding the author, year of publication, study design, risk of bias, number of participants and outcome measure in a systematic manner.

RESULTS

4.1 STUDY SELECTION

EndNote was utilized to save and arrange the articles in the process of choosing the relevant study. In total, 1525 articles from four databases were retrieved during the initial literature search, mainly hailing from PubMed (n=420), PEDro (n=108), The Cochrane Library (n=147) and ScienceDirect (n=850). No additional records were identified through other sources. Subsequently, duplicates are removed to get the overall number of studies, which comes out to 1511 articles. The papers' titles and abstracts were looked at to ensure they fulfilled the established inclusion criteria. 1489 articles were removed after being screened for the title and abstract since they were considered irrelevant to the study. Next, the remaining 22 publications were assessed using the aforementioned list of inclusion and exclusion criteria.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Following the last screening, 15 articles were removed, resulting in the inclusion of the remaining seven full-text articles in this systematic review.

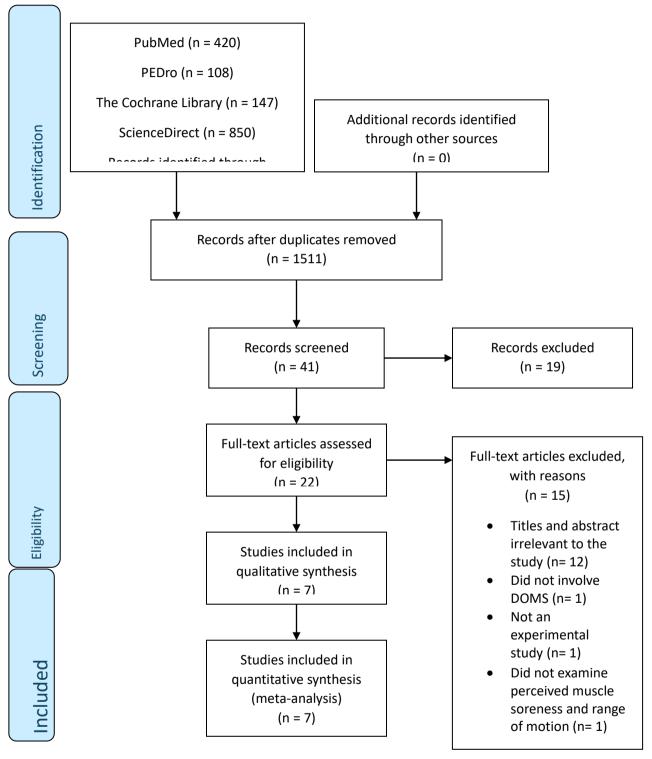


Figure 4.1: PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) flow diagram of each stage of the study selection

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

4.2 STUDY CHARACTERISTICS

The study contained seven articles, all of which were randomized control trials (RCT). Participants in these publications varied from 25 to 60 participants, with ages ranging from 18 to 45 years old. They are all made up of a healthy adult population, including both ordinary people and those who are active. The interventions utilized in these seven articles were static and PNF stretching. Some studies comprised both static and PNF stretching, such as Sohail et al. (2022), Xie et al. (2017), Cha et al. (2015) and McGrath et al. (2014), while others consisted solely of static stretching, such as Apostolopoulus et al. (2018), Leslie et al. (2017) and Chen et al. (2015). Table 4.1 displays information about participants, interventions, outcome measures and results of these studies.

Table 4.2: Characteristics of Included Studies

Author/Year	Study	Participants	Intervention	Outcome	Results
	design	Inclusion criteria		Measures	
		Study settings			
Sohail et al.	RCT	Participants	Intervention	• VAS	Significant
(2022)		N=48	group Group A	Ankle range	difference in
			(n=16)	of	dorsiflexion
		Inclusion criteria	• Static	motion	ROM
		1) Age 18-45	stretchi	(ROM)	measurement
		years	ng of		for three
		2) DOMS in	calf muscles;		groups at day
		calf	10 repetitions		3 post–
		muscles	with resting		treatment
		3) No known	period of 10		reading and
		musculoske	sec in between,		day 4 and 5
		letal disease	twice per day		(p < 0.05).
		4) Pain rating	for 5 days,		Significant
		3 to 8 on	holding each		group
		numerical	stretch for 30		differences
		pain rating	sec		for PNF
		scale (NRS)			group in
		Lower	Intervention		dorsiflexion
		extremity	group		ROM in the
		functional	Group B		follow up
		scale	(n=16)		sessions (p <
		(LEFS)	• PNF stretch		0.05) on day
		score in	of hold		2, 3, 4 and 5
		range of 26	relax-hold; the		
		to 79	hold phase		VAS score
			lasting 8 sec		Significant
		Study settings	and relaxation		differe
		Gyms of	phase of 10		nce
		Faisalabad,	sec, performed		in VAS scores

			_		
		including Al Fahad	15 repetitions		at day 2, 3, 4
		Gym, Golds gym,	in one set for 5		and 5 follow
		Boulevard Gym,	days		up session
		and Zain Gym			between the 3
					groups (p <
			Control group		0.05).
			(n=16)		Significant
			• No		group
			interve	n	differences
			tion		for VAS in
					PNF group in
					the follow up
					sessions (p <
					0.05) on day
					3, 4 and 5
					• PNF
					stretch
					ing
					more
					effective than
					static
					stretching in
					reducing pain
					and
					improving
					range of
					motion of the
					ankle
Apostolopoulos	RCT	Participants	Intervention	• VAS/numerical	• Statistically
et al. (2018)		N=30	group	rating scale	significant
			(n=10)	_	main effect of
		Inclusion criteria	High-		time on
		Age: 25 ± 6 years	intensity		perceived
		Mass: 83.1 ± 10.7	(70%-80%		muscle
		kg	maximum		soreness
		Height: 1.78 ±	perceived		values after an
		0.68 m	stretch)		unaccustomed
		Actively involved	group		eccentric
		in resistance			exercise bout
		training on a	Intervention		was observed
		regular basis and	group		(p < 0.001),
		0.68 m Actively involved in resistance training on a	stretch) group Intervention		unaccustomed eccentric exercise bout was observed

were familiar with	(n=10)	suggesting a
the concept of	Low-	reduction in
performing	intensity	perceived
maximal	(30%–40%	muscle
contractions.	maximum	soreness
	perceived	values over
Study setting	stretch)	time
	group	regardless of
		condition
	Both	
	stretching	• However,
	groups	low
	performed 3	intensity
	sets of passive	passive
	static	static
	stretching	stretching
	exercises of	may lower
	60 s each for	perceived
	hamstrings,	muscle
	hip flexors,	soreness to
	and	a greater
	quadriceps,	extent
	over 3	compared
	consecutive	with high-
	days, post-	intensity
	unaccustomed	passive static
	eccentric	stretching and
	exercise	control at 72 h
		post-
	Control group	unaccustomed
	(n=10)	eccentric
	No	exercise
	intervention	
	given post-	Low-
	unaccustomed	intensity
	eccentric	passive static
	exercise	stretching
		versus high-
		intensity
		passive static
		stretching
		• low-
		intensi
		IIICHSI

Г	1	Г	<u> </u>	
				ty
				passiv
				e
				static
				stretching
				resulted in a
				likely small
				beneficial
				reduction in
				perceived
				muscle
				soreness
				immediately
				following
				unaccustomed
				eccentric
				exercise
				(time 0) to 24
				h, an unclear
				effect
				between 24-
				48 h, and a
				likely
				moderate
				beneficial
				reduction in
				muscle
				soreness
				compared
				with high-
				intensity
				passive static
				stretching
				between 48–
				72 h
				Low-
				intensity
				passive static
				stretching
				versus
				control
				• Low-
				- LUW-

	T	T			7
					intensi
					ty
					passiv
					e
					static
					stretching
					resulted in
					likely small
					and very
					likely large
					beneficial
					decrease in
					perceived
					muscle
					soreness from
					immediately
					post-
					unaccustomed
					eccentric
					exercise to
					24 h and 72 h
					after,
					respectively
					High-
					intensity
					passive static
					stretching
					versus
					control
					Unclear
					betwee
					n all
					assessment
					timepoints
					r
Xie et al.	RCT	Participants	Intervention	VAS (muscle	• No
(2017)		N=48	group	soreness)	statisti
			(n=16)	ROM	cal
		Inclusion criteria	Dynamic		differences in
		Healthy	contract-		muscle
		individuals without	relax group		soreness
		calf muscle	• Dynamic		between the
			- Dynamic		octween the

corenecs and any	contro	DC CC and
soreness and any other	contra ct	DS, SS, and
musculoskeletal	relax	control groups
disorders	stretching for	• No
No exercise	gastrocnemius	• No differe
participation a	and	nces in
week before the	soleus on the	ROM were
study	dominant leg,	found
Study	10 times with	between the
Study setting	10-second	DS, SS, and
Research	rests in	
laboratory	between sets,	control groups at any time
laboratory	performed	
	twice per day	point.
	for 5	
	consecutive	
	days	
	days	
	Intervention	
	group	
	(n=16)	
	Static	
	stretching	
	group	
	• Static	
	stretch	
	ing for	
	gastrocnemius	
	and soleus on	
	the dominant	
	leg, hold for	
	30 seconds	
	with 10-	
	second	
	intervals and	
	repeated 10	
	times,	
	twice a day	
	for 5 days	
	Control group	
	(n=16)	
	No	

					intervention		
					given		
					given		
Leslie	et	al.	RCT	Participants	Intervention	Range of motion	Flexibility
(2017)	Ct	ar.	Rei	N=25	group	Soreness (VAS)	training and
(2017)				11-23	Flexibility	Boreness (VIIS)	single-bout
				Inclusion criteria	training		groups had
				Height: 173.8 ±	(n=8)		47% less
				7.8 cm; weight:	• Static		soreness at 48
				$68.6 \pm 16.5 \text{ kg};$	flexibi		h after the
				age: 22.5 ± 4.2	lity		first bout of
				years with a range	training of the		ECC
				of 19–34 years).	knee flexors		compared
				01 17 34 years).	was		with
				Study setting	completed		control (p <
				University of	3x/week and		0.05).
				Saskatchewan	30min/day for		0.03).
				Suskatene wan	4 weeks (12		The flexibility
					sessions) with		training group
					48 h		had 10% less
					of rest		soreness at 48
					between		h after the
					sessions. A		fourth ECC
					supine,		bout
					straight-leg		compared
					hamstring		with both the
					stretch was		single-bout
					used. Hold		and control
					duration start		groups (p <
					with 5 sets of		0.05).
					3-min holds		,
					and ending		The flexibility
					with 3 sets of		group
					5-min holds		decreased in
							active ROM
					Intervention		following the
					group		eccentric
					A single bout		training phase
					of		(p = 0.001)
					intense		but remained
					eccentric		significantly
					exercise		greater than
					(n=9)		baseline

		1				
				• A single		values (p <
				eccent		0.01). As for
				ric		passive ROM,
				bout was		flexibility
				completed for		group
				4 weeks with		decreased in
				the		passive ROM
				participants		following the
				performed the		eccentric-
				eccentric		training phase
				exercise on a		(p < 0.05) but
				dynamometer		remained
				for 6 sets of 8		significantly
				eccentric		greater than
				repetitions of		baseline
				voluntary		values (p =
				isotonic		0.001)
				contractions		·
				of the knee		
				flexors with a		
				load of 80%		
				of isometric		
				MVC with 1		
				min of rest		
				between sets		
				Control		
				group		
				(n=8)		
				No		
				intervention		
				given during a		
				4-week		
				priming phase		
				r		
				All groups		
				then		
				completed 4-		
				weeks of		
				eccentric		
				training.		
Chen et	al.	RCT	Participants	Intervention	• Hamstring	• For ROM, a

(2015)	N=36	group	flovibility	significant 2
(2013)	N=30	group Static active	flexibility was evaluated	significant 2- way
	Inclusion criteria	stretching	using passive	interaction
	Age $20.6 \pm 2.4 \text{ y}$,	(n=12)	straight-leg	(time
	Age 20.0 \pm 2.4 y, height 172.3 \pm 4.9	6 sets of 15	raises (SLR)	`
	cm, weight $65.8 \pm$	seconds with	Taises (SLK)	intervention)
		15 seconds	- II	was also
	8.8 kg) with	of rest	Hamstring	
	limited passive	between sets	muscle	noted (P <0
	straight-leg	between sets	soreness (VAS)	.001). The CON group
	elevation (hip flexion ROM of	Intervention		showed a
	less than 80° and			significant
		group Dynamic		decrease in
	not involved in any	active		ROM relative
	current regular			to the SAS
	resistance, aerobic,	stretching (n=12)		(D1–D5)
	or flexibility			(D1–D3)
	training	15 repetitions		a III a usa a turin a
		(set at a		Hamstring
		rhythm of 60		ROM
		beats/min) per		increases after
		set for 6 sets, with a rest		static active
				stretching
		period of 15		compared to
		seconds		control group
		between sets		
		Control		• For muscle
		Control group		sorene
		(n=12)		SS,
		No		a significant
		intervention		2-way
		given		interaction
		A ftom on the		(time
		After each intervention,		×
		,		intervention)
		all subjects		was noted (P
		performed 6 sets of 10		<.001).
				Soreness was
		maximal		significantly
		eccentric		smaller in the
		contractions		SAS than in
		of the		the CON
		dominant-leg		group during
		knee flexors		the D3-to-D5

	Г	Т	Т	Г	
			on an		period after
			isokinetic		eccentric
			dynamometer		exercise
					• Muscle
					sorene
					SS
					decreases
					after static
					active
					stretching
					compared to
					control group
Cha et al.	RCT	Participants	Intervention	Muscle fatigue	Significant
(2015)		N=60	group	after	increas
			HR-AC	DOMS induction	es
		Inclusion criteria	group		in hip joint
		Healthy people	(n = 30)	• Range of	angle
		without an		motion of	was observed
		orthopaedic history	The	the hip joint after	between the
		age, height,	investigator	DOMS induction	HR-AC group
		and weight were	passively		and the PSLR
		$20.2 \pm 1.4 \text{ years},$	stretched the		group (p
		169.7 ± 5.1 cm,	held that		< 0.05) post
		and $59.8 \pm 10.2 \text{ kg}$	position for 7		intervention
		in the hold relax-	seconds.		
		agonist contraction	Next, the		Significant
		(HR-AC) group,	subject		decrea
		respectively	maximally		se
		21.3 ± 1.2 years,	isometrically		in muscle
		171.8 ±	contracted		fatigue was
		9.3 cm, and 62.2 ±	the		observed
		5.4 kg in the PSLR	hamstrings for		between the
		group, respectively	7		HR-AC group
			After the		and the PSLR
			contraction,		group (p
			the subject		< 0.05) post
			relaxed for 5		intervention
			seconds.		
			Repeat 20		
			times.		
	<u> </u>	L	<u> </u>	L	<u> </u>

	<u> </u>		Intervention		
			group		
			Passive		
			straight leg		
			raise (PSLR)		
			(n=30)		
			• The		
			hamstr		
			ing		
			muscle was		
			stretched with		
			light,		
			tolerable pain		
			and held for		
			30 seconds.		
			After the		
			passive		
			stretching,		
			the subject		
			relaxed for 5		
			seconds.		
			Repeat 20		
			times.		
McGrath et al.	RCT	Participants	Intervention	Muscle soreness	DOMS pain
(2014)		N=57	group	scale	significantly
			PNF stretch	ROM (sit and	decreased
		Inclusion criteria	group	reach test)	(p<0.05) from
		Ages ranging from	(n=19)		24 to 48
		18-25 years.	• The		hours post-
		Not exercise the	stretch		exercise for
		lower extremities	ed leg		the PNF and
		at least 48 hours	was		control
		prior to their visit.	fully extended		groups, but
			on the		not for the
			investigator's		static stretch
			shoulder as a		group
			passive		
			assist and was		
			elevated until		
			the participant		
			maximal		
			self-reported a		

stretch on the hamstrings muscles, then the "contract-relax-agonist contract" PNF stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20) • Participants			
muscles, then the "contract- relax-agonist contract" PNF stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		stretch on the	
the "contract" relax-agonist contract" PNF stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		hamstrings	
relax-agonist contract? PNF stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		muscles, then	
contract" PNF stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		the "contract-	
stretch protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		relax-agonist	
protocol was performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		contract" PNF	
performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		stretch	
performed; whereby, the participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		protocol was	
participant maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		performed;	
maximally contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		whereby, the	
contracted the hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		participant	
hamstrings isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		maximally	
isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		contracted the	
isometrically for 5 seconds against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		hamstrings	
against the shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)			
shoulder of the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		for 5 seconds	
the PI followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		against the	
followed by 5 seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		shoulder of	
seconds of rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		the PI	
rest. Then, the leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		followed by 5	
leg moved to a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		seconds of	
a further stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		rest. Then, the	
stretched position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		leg moved to	
position of the hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		a further	
hamstrings and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		stretched	
and held it there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		position of the	
there for 5 seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		hamstrings	
seconds. This protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		and held it	
protocol was repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		there for 5	
repeated twice on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		seconds. This	
on both legs with a 4 second break between sets. Intervention group Static stretch group (n=20)		_	
with a 4 second break between sets. Intervention group Static stretch group (n=20)			
second break between sets. Intervention group Static stretch group (n=20)		_	
break between sets. Intervention group Static stretch group (n=20)		with a 4	
sets. Intervention group Static stretch group (n=20)			
Intervention group Static stretch group (n=20)		break between	
group Static stretch group (n=20)		sets.	
group Static stretch group (n=20)			
Static stretch group (n=20)		Intervention	
group (n=20)			
Participants			
		• Participants	

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

reached toward one foot with both hands, held for 10 seconds with 4 seconds rest
between stretches, for 2 sets on both legs.
Control group (n=18) • No interve ntion given

4.3 ASSESSMENT OF THE INCLUDED STUDIES

All articles were deemed to have a low risk of bias in accordance with the standards outlined in the Revised Cochrane risk-of-bias tool for randomized trials (RoB 2).

Table 4.3: Quality Assessment of Included Studies using RoB2.

	Risk of Bias Domain						
		D1	D2	D3	D4	D5	Overall
Study	Sohail et al. (2022)	•	•	•	•	•	
	Apostolopo ulus et al. (2018)	•	•	•	•	•	•
	Xie et al. (2017)	•	•	•	•	•	•
	Leslie et al. (2017)	•	•	•	•	•	•
	Chen et al. (2015)	•	•	•	•	•	•
	Cha et al. (2015)	•	•	•	•	•	•
	McGrath et al. (2014)	•	•	•	•	•	•

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Domains:

D1: Bias due to randomisation

D2: Bias due to deviation from intended intervention

D3: Bias due to missing data

D4: Bias due to outcome measurement D5: Bias due to selection of reported result

Judgement

High risk

Some concerns

Low risk

4.4 THE EFFECT OF STATIC AND PNF STRETCHING IN REDUCING DOMS

Seven studies included in this systematic review examined the effect of static stretching in reducing DOMS whereas four studies explored the effect of PNF stretching in reducing DOMS. The studies by Sohail et al. (2022), Apostolopoulos et al. (2018), Xie et al. (2017), Leslie et al. (2017), Chen et al. (2015), Cha et al. (2015) and McGrath et al. (2014) utilized static stretching while the studies by Sohail et al. (2022), Xie et al. (2017), Cha et al. (2015) and McGrath et al. (2014) only incorporate PNF stretching as their other intervention along with static stretching. The perceived muscle soreness was the same outcome measure utilized in six studies along with the range of motion of various joints. However, there was only a single study that employed perceived muscle soreness without measuring the range of motion, and it was written by Apostolopoulos et al. (2018). Conversely, a study by Cha et al. (2015) only includes ROM without measuring perceived muscle soreness as their outcome measure in their study. Static stretching was reported to have a significant result of reduction in perceived muscle soreness and improvement in range of motion. It was reported in three studies (Sohail et al., 2022; Leslie et al., 2017; Chen et al., 2015). The study conducted by Apostolopoulus et al. (2018) showed a significant decrease in the perceived muscle soreness after the application of static stretching. However, the study did not address the effect of static stretching on range of motion because it did not employ range of motion as an outcome measure. On the other hand, both the Sohail et al. (2022) study and the Cha et al. (2015) study obtained significant results after administering PNF stretching to participants, with both studies demonstrating a substantial improvement in range of motion. However, for perceived muscle soreness, only a study by Sohail et al. (2022) showed a significant reduction in perceived muscle soreness. Static and PNF stretching was utilized as the intervention in studies by Xie et al. (2017) and McGrath et al. (2014), however, neither study showed any improvement in perceived muscle soreness or range of motion. As both Apostolopoulus et al. (2018) and Cha et al. (2015) did not use ROM and perceived muscle soreness as their outcome measures respectively, there is no outcome or effect of static and PNF stretching on DOMS symptoms mentioned in both studies.

DISCUSSION AND CONCLUSION

5.1 THE EFFECT OF STATIC AND PNF STRETCHING IN REDUCING DOMS AMONG ADULTS

The purpose of this systematic review was to determine whether static and PNF stretching may alleviate DOMS in healthy adults. The study by Sohail et al. (2022), Leslie et al. (2017) and Chen et al. (2015) reported that static stretching appears to be effective for perceived muscle soreness reduction and improvement in range of motion (p < 0.05). Similarly, the study by Cha et al. (2015) that utilized static stretching as their intervention for the participants showed a significant improvement in range of motion

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

(p < 0.05). Moreover, Apostolopoulus et al. (2018) found out that static stretching has a significant difference on perceived muscle soreness (p < 0.001).

Apostolopoulus et al. (2018) in their study, also focused on the intensity to perform stretching and it is discovered that the group that received low intensity static stretching experienced significant reduction in perceived muscle soreness that was measured by VAS score compared to the groups that receive high intensity static stretching and control group. In terms of PNF stretching, out of four studies, two studies; Sohail et al. (2022) and Cha et al. (2015) showed significant improvement in range of motion (p < 0.05). However, for outcome measure of perceived muscle soreness, only Sohail et al. (2022) reported significant results of reduction in perceived muscle soreness (p < 0.05).

On the other hand, a study by Xie et al. (2017) who prescribed static and dynamic contract-relax stretching found no significant reduction in the perceived muscle soreness and range of motion compared to non-intervention group. The ineffectiveness of PNF stretching in lowering DOMS in healthy adults could be attributed to the existence of additional factor that exacerbate and initiate DOMS symptoms. The dosage of the intervention, which includes total duration (number of repetitions), duration of stretch held, intensity (to a point of pain or no discomfort), and stretching position, could be a contributing factor to why dynamic contract relax stretching is unable to reduce DOMS symptoms. This research also indicates that the intramuscular connective tissue may not lengthen as a result of either dynamic contract-relax stretching or static stretching whereby it is ineffective in improving ROM of the ankle. Another study by McGrath et al. (2014) also found that post-exercise PNF stretching does not significantly reduce DOMS. Indeed, according to the statistical analysis, some participants may have had increased DOMS as a result of the pre-stretch muscle contractions of the post-exercise PNF protocol, which put more strain on already injured muscles.

5.2 CONCLUSION

The conclusion that static stretching is an effective intervention for reducing delayed-onset muscle soreness (DOMS) is supported by the synthesis of existing data from several trials. The results show that static stretching has a positive effect in reducing DOMS among healthy adults following exercise. The strength of the evidence and the overall quality of the included studies all support these findings. It is noteworthy that static stretching is effective, indicating that it may be an effective method for reducing DOMS in a variety of situations. However, future research could lead to a more thorough understanding of the significance of static stretching in DOMS management, including studies into the best stretching regimens and their long-term effects.

The available data from several studies, when combined, yields an uncertain conclusion regarding the effectiveness of PNF stretching in reducing DOMS among healthy adults. Determining the exact effect of PNF stretching on DOMS is difficult due to inconsistent data among the included research, as revealed by the findings. This uncertainty is exacerbated by variations in study methodology. The evidence supporting this effect is still inconclusive, as two of the analyzed RCT studies show no improvement in ROM, while the other two show improvement in ROM. Regarding perceived muscle soreness, only one RCT study found that PNF stretching was effective in reducing DOMS by demonstrating a reduction in perceived muscle soreness. Whereas another two RCTs reported no reduction in perceived soreness. According to this study, RCT research on the effectiveness of PNF stretching in lowering DOMS in healthy adults are currently lacking. Therefore, it is necessary to

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

conduct more studies with larger sample sizes and established methods to clarify the effect of PNF stretching in alleviating DOMS and to offer more conclusive evidence for its efficacy.

5.3 LIMITATIONS OF THE STUDY

Several limitations are present in the current study. Firstly, there was a limited number of PNF stretching-related publications that were analyzed. This is due to the lack of RCT studies on the benefits of PNF stretching for the symptoms of DOMS, including perceived muscle soreness and ROM. Secondly, it is challenging to generalize our results because the subjects involved were only healthy adults. Thirdly, additional outcome measures, such as muscle strength, should consider to be included. Forthly, the other type of stretching should also be included in this study such as dynamic stretching. Finally, there is the potential that some relevant papers in other databases were missed because this review focused solely on three databases: PubMed, PEDro, The Cochrane Library and ScienceDirect.

5.4 RECOMMENDATIONS FOR FUTURE RESEARCH

In light of the current findings, a number of recommendations are made for future research. More investigation and research are needed to determine how stretching affects DOMS symptoms in people of all ages, but particularly in the elderly. In addition, future studies should examine the effects of various stretching techniques on DOMS and identify the most beneficial technique.

REFERENCES

- Apostolopoulos, N. C., Lahart, I. M., Plyley, M. J., Taunton, J., Nevill, A. M., Koutedakis, Y., Wyon, M., & Metsios, G. S. (2018). The effects of different passive static stretching intensities on recovery from unaccustomed eccentric exercise - a randomized controlled trial. Appl Physiol Nutr Metab, 43(8), 806-815. https://doi.org/10.1139/apnm-2017-0841
- 2. American College of Sports Medicine. (2023). Stretching and Flexibility Guidelines Update. https://www.acsm.org/blogdetail/acsmcertifiedblog/2021/03/18/stretching-and flexibility-guidelines-update
- 3. Bernhart, C. (2013). Running head: STRETCHING TECHNIQUES AND EFFECTS A Review of Stretching Techniques and Their Effects on Exercise. https://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=1397&context=honors
- 4. Bhattacharyya, K. B. (2017). The stretch reflex and the contributions of C David Marsden. *Annals of Indian Academy of Neurology*, 20(1), 1–1. https://doi.org/10.4103/0972-2327.199906
- 5. Biga, L. M., Bronson, S., Dawson, S., Harwell, A., Hopkins, R., Kaufmann, J., LeMaster, M., Matern, P., Morrison-Graham, K., Oja, K., Quick, D., Runyeon, J., OSU OERU, & OpenStax. (2019). 11.1 Describe the roles of agonists, antagonists and synergists. Oregonstate.education; OpenStax/Oregon State University. https://open.oregonstate.education/aandp/chapter/11-1-describe-the-roles-of-agonists-antagonists-and-synergists/
- 6. Cha, H.-G., & Kim, M.-K. (2015). Effects of the hold and relax-agonist contraction technique on recovery from delayed onset muscle soreness after exercise in healthy adults. Journal of Physical Therapy Science, 27(10), 3275–3277. https://doi.org/10.1589/jpts.27.3275
- 7. Chen, C. H., Chen, T. C., Jan, M. H., & Lin, J. J. (2015). Acute effects of static active or dynamic active stretching on eccentric-exercise-induced hamstring muscle damage. Int J Sports Physiol Perform, 10(3), 346-352. https://doi.org/10.1123/ijspp.2014-0206

- 8. Engels, R. (2017). The Effect of Delayed Onset Muscle Soreness on Jumping Mechanics and Performance. https://openprairie.sdstate.edu/cgi/viewcontent.cgi?article=2815&context=etd
- 9. Gash, M. C., Kandle, P. F., Murray, I. V., & Varacallo, M. (2023). Physiology, Muscle Contraction. Nih.gov; StatPearls Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537140/
- 10. Han, K., Kwon, O., Jung, S.-Y., Park, I., Hwang, M.-S., Park, S.-Y., Hwang, E.-H., & Lee, J.-H. (2020). Jakyakgamcho-tang in the relief of delayed-onset muscle soreness in healthy adults: study protocol for a randomized, double-blind, placebo-controlled, crossover design clinical trial. Trials, 21(1). https://doi.org/10.1186/s13063-020-4119-4
- 11. Herbert, R. D., Marcos de Noronha, & Kamper, S. J. (2011). Stretching to prevent or reduce muscle soreness after exercise. The Cochrane Library. https://doi.org/10.1002/14651858.cd004577.pub3
- 12. Heiss, R., Lutter, C., Freiwald, J., Hoppe, M. W., Grim, C., Klaus Poettgen, Forst, R., Bloch, W., Moritz Hüttel, & Thilo Hotfiel. (2019). Advances in Delayed-Onset Muscle Soreness (DOMS) Part II: Treatment and Prevention. Sportverletzung-Sportschaden, 33(01), 21–29. https://doi.org/10.1055/a-0810-3516
- 13. Hotfiel, T., Kellermann, M., Swoboda, B., Wildner, D., Golditz, T., Grim, C., Raithel, M., Uder, M., & Heiss, R. (2017). Application of Acoustic Radiation Force Impulse Elastography in Imaging of Delayed Onset Muscle Soreness: A Comparative Analysis With 3T MRI. Journal of sport rehabilitation.
- 14. Hotfiel, T., Freiwald, J., Hoppe, M., Lutter, C., Forst, R., Grim, C., Bloch, W., Moritz Hüttel, & Heiss, R. (2018). Advances in Delayed-Onset Muscle Soreness (DOMS): Part I: Pathogenesis and Diagnostics. Sportverletzung-Sportschaden, 32(04), 243–250. https://doi.org/10.1055/a-0753-1884
- 15. Howell, K. (2018). The Proper Use of Proprioceptive Neuromuscular Facilitation. The Idea of an Essay,

 5,

 https://digitalcommons.cedarville.edu/cgi/viewcontent.cgi?article=1149&context=idea_of_an_essay
- 16. Leslie, A. W., Lanovaz, J. L., Andrushko, J. W., & Farthing, J. P. (2017). Flexibility training and the repeated-bout effect: priming interventions prior to eccentric training of the knee flexors. Appl Physiol Nutr Metab, 42(10), 1044-1053. https://doi.org/10.1139/apnm-2017-0093
- 17. McCuller, C., Rishita Jessu, & Callahan, A. L. (2023). *Physiology, Skeletal Muscle*. Nih.gov; StatPearls
 Publishing. https://www.ncbi.nlm.nih.gov/books/NBK537139/#:~:text=Grossly%2C%20skeletal%20muscle%20fibers.
- 18. McGrath, R. P., Whitehead, J. R., & Caine, D. J. (2014). The Effects of Proprioceptive Neuromuscular Facilitation Stretching on Post-Exercise Delayed Onset Muscle Soreness in Young Adults. International Journal of Exercise Science, 7(1), 14–21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831894/#:~:text=A%203%20%C3%97%202%20 mixed,for%20the%20static%20stretching%20group.
- 19. Mizumura, K. & Taguchi, T. (2015). Delayed onset muscle soreness: Involvement of neurotrophic factors. PubMed, 66(1), 43–52. https://doi.org/10.1007/s12576-015-0397-0
- 20. Millner, R., Dr, V., Hardoon, & Lindsay, D. (2022). Original Article Improvements in the range of motion, power and agility in active people utilizing multiple muscle contract-relax-antagonist-contract (CRAC) stretches. *Journal of Physical Education and Sport* ® (*JPES*), 22(2), 281–288. https://doi.org/10.7752/jpes.2022.02036

- 21. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
- 22. Mohamed Tawfik, Agus, K., Mohamed, Hien, N., Kien N. T., Ahmed, A., & Huy N. T. (2019). A step-by-step guide for conducting a systematic review and meta-analysis with simulation data. 47(1). https://doi.org/10.1186/s41182-019-0165-6
- 23. Muanjai, P., & Namsawang, J. (2015). Original Article Effects of stretching and cold-water immersion on functional signs of muscle soreness following plyometric training. Journal of Physical Education and Sport ® (JPES), 15(1), 128–135. https://doi.org/10.7752/jpes.2015.01021 Nahon, R. L., Santos, J., & Monteiro, A. (2021). Physical therapy interventions for the treatment of delayed onset muscle soreness (DOMS): Systematic review and meta-analysis. Physical Therapy in Sport, 52, 1–12. https://doi.org/10.1016/j.ptsp.2021.07.005
- 24. Nelson, A., & Kokkonen, J. (2014). *Stretching Anatomy Second Edition* . https://acikders.ankara.edu.tr/pluginfile.php/168561/mod_resource/content/0/Stretching%20anatomy%202.pdf
- 25. Proske, U., & Morgan, D. L. (2001). Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. The Journal of physiology, 537(Pt 2), 333–345. https://doi.org/10.1111/j.1469-7793.2001.00333.x
- 26. Shaha, S., Ur, S., Sridhar, S., Pradeep Krishnareddy, & Bhagyashree Salekar. (2021). Comparing the effect of static, ballistic and contract-relax stretching on hamstring muscles flexibility in young individuals. 8(1), 09-15. https://doi.org/10.22271/kheljournal.2021.v8.i1a.1942
- 27. Sohail, M. A. A., Tahir, R., Maqbool, A., Hanif, S., & Saeed, O. (2022). Comparing the effectiveness of static stretching and proprioceptive neuromuscular facilitation stretching in treating delayed onset muscle soreness in calf muscles of runners. Anaesthesia, Pain & Intensive Care, 26(1), 31-38
- 28. Sonkodi B., Berkes, I., & Koltai, E. (2020). Have We Looked in the Wrong Direction for More Than 100 Years? Delayed Onset Muscle Soreness Is, in Fact, Neural Microdamage Rather Than Muscle Damage. 9(3), 212–212. https://doi.org/10.3390/antiox9030212
- 29. Steber, C. (2022). How Long Should You Hold A Stretch? Here's The Deal. Bustle; Bustle. https://www.bustle.com/wellness/how-long-should-you-hold-stretch
- 30. Tanabe, Y., Fujii, N., & Suzuki, K. (2021). Dietary Supplementation for Attenuating Exercise-Induced Muscle Damage and Delayed-Onset Muscle Soreness in Humans. 14(1), 70–70. https://doi.org/10.3390/nu14010070
- 31. Takeuchi, K., & Nakamura, M. (2020). The optimal duration of high-intensity static stretching in hamstrings. 15(10), e0240181–e0240181. https://doi.org/10.1371/journal.pone.0240181
- 32. Tenberg, S., Kazunori Nosaka, & Wilke, J. (2022). The Relationship Between Acute Exercise-Induced Changes in Extramuscular Connective Tissue Thickness and Delayed Onset Muscle Soreness in Healthy Participants: A Randomized Controlled Crossover Trial. *Sports Medicine Open*, 8(1). https://doi.org/10.1186/s40798-022-00446-7
- 33. Torre, M. F., María Martinez-Ferran, Vallecillo, N., Jiménez, S. L., Romero-Morales, C., & Helios Pareja-Galeano. (2021). Supplementation with Vitamins C and E and Exercise-Induced Delayed-Onset Muscle Soreness: A Systematic Review. Antioxidants, 10(2), 279–279. https://doi.org/10.3390/antiox10020279

- 34. Veqar Z., & Imtiyaz S. (2014). Vibration Therapy in Management of Delayed Onset Muscle Soreness (DOMS). https://doi.org/10.7860/jcdr/2014/7323.4434
- 35. Xie, Y., Feng, B., Chen, K., Andersen, L. L., Page, P., & Wang, Y. (2017). The Efficacy of Dynamic Contract-Relax Stretching on Delayed-Onset Muscle Soreness Among Healthy Individuals: A Randomized Clinical Trial. Clin J Sport Med, 28(1), 28-36. https://doi.org/10.1097/JSM.000000000000000442
- 36. Zulaini, Harahap, N. S., Siregar, N., & Zulfahri. (2021). Effect Stretching and Recovery on Delayed Onset Muscle Soreness (DOMS) After Exercise. 1811(1), 012113–012113. https://doi.org/10.1088/1742-6596/1811/1/012113