
 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240631930 Volume 6, Issue 6, November-December 2024 1 

 

 
 

 
{ } 

Explicit Approximate Representations of 

Sequences as Suborbits in Banach Spaces: 

Universal and Function Space Approaches 
 

Rampal Maurya, Prof. Krisna Bhan Gupta 

 

Research Scholar, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur 

St. Andrew's College , Gorakhpur 

 

Abstract 

In a recent extension of the work by Halperin et al., Grivaux demonstrated that any linearly independent 

sequence {𝑓𝑘}𝑘=1
∞  in a separable Banach space 𝑋 can be expressed as a suborbit {𝑇𝛼(𝑘)𝜑}

𝑘=1

∞
 of some 

bounded operator 𝑇: 𝑋 → 𝑋. Typically, neither the operator 𝑇 nor the powers 𝛼(𝑘) are known explicitly. 

In this paper, we explore approximate representations {𝑓𝑘}𝑘=1
∞ ≈ {𝑇𝛼(𝑘)𝜑}

𝑘=1

∞
 for certain types of 

sequences {𝑓𝑘}𝑘=1
∞ . Unlike previous results, we explicitly describe the operator 𝑇 and the powers 𝛼(𝑘), 

without requiring the sequences to be linearly independent. The notion of approximation is defined so that 

{𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 retains essential characteristics of {𝑓𝑘}𝑘=1

∞ , such as in atomic decompositions and Banach 

frames. 

We introduce two different approaches. The first is universal, applying to general Banach spaces. While 

the technical conditions are straightforward to verify in sequence spaces, they become more complex in 

function spaces. Therefore, we present a second approach, specifically designed for Banach function 

spaces. Several examples demonstrate that these results hold in arbitrary weighted ℓ𝑝-spaces and 𝐿𝑝-

spaces.  

               

Keywords: Approximate operator representations, Banach spaces, iterated systems, suborbits. 

 

1 Introduction 

 A classical result by Halperin, Kitai, and Rosenthal [26] states that if {𝑓𝑘}𝑘=1
∞  is any linearly independent sequence 

in a separable Hilbert space ℋ, then there exists a bounded linear operator 𝑇: ℋ → ℋ and appropriate choices of 

powers 𝛼(𝑘) ∈ ℕ0 such that 𝑓𝑘 = 𝑇𝛼(𝑘)𝑓1, for all 𝑘 ∈ ℕ.    

This fundamental observation was later generalized to Banach spaces by Grivaux[23],using a 

different technique. Neither the operator 𝑇 nor the appropriate powers 𝛼(𝑘) are given in an easily accessible form 

in [23, 26]. Generalizing ideas presented in [12] in the setting of frames in Hilbert spaces, we will provide an 

alternative approach to the questions by Halpering et al. by considering approximate operator representations in a 

given Banach space 𝑋. In other words, we will give up the requirement that the operator 𝑇 leads to an exact 

representation of the given sequence {𝑓𝑘}𝑘=1
∞ . Instead, we will aim at a construction of a bounded operator 𝑇, a 

vector 𝜑 ∈ 𝑋, and appropriate powers 𝛼(𝑘) such that the sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 approximates the given sequence 

{𝑓𝑘}𝑘=1
∞  in various senses to be specified below. We will show that in several cases we can specify as well the 

operator 𝑇, the vector 𝜑, as the powers 𝛼(𝑘). 
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The paper is organized as follows. In the rest of the introduction we set the stage by providing basic 

definitions and results concerning Banach sequence spaces and shift-operators on Banach spaces. In 

Sections 2.1-2.2 we provide general results for obtaining approximate representations of certain 

sequences, in the setting of general Banach spaces having a basis. The results are based on the assumption 

that the left/right-shift operators with respect to a certain basis - see (1.1) and (1.2) below - are bounded. 

This condition can easily be checked in several types of sequence spaces; in particular, given any weighted 

ℓ𝑝-space, we can specify a scaling of the canonical unit vectors that satisfy the condition. We can also 

verify the condition in certain Banach spaces of functions; however, the condition is difficult to handle in 

general function spaces. For this reason we provide an alternative approach, tailored to Banach function 

spaces, in Section 2.3. Here, the assumption of the left/right-shift operators being bounded is replaced by 

the condition that the translation operators act boundedly on the given function space, a condition that is 

trivially satisfied in, e.g., all weighted 𝐿𝑝-spaces with an 𝑚-moderate weight function. In Section 2.4 we 

show how to construct so-called 𝜖-close approximations {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 of the sequences {𝑓𝑘}𝑘=1

∞  discussed 

in Sections 2.1-2.3; this paves the way for the results in Section 2.5, where it is shown how to construct 

the sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 such that it keeps key features of the sequence {𝑓𝑘}𝑘=1

∞  in the setting of atomic 

decompositions. 

In the entire paper 𝑋 will denote a separable Banach space, and 𝑋𝑑 will be a Banach space consisting of scalar-

valued sequences indexed by ℕ. We will refer to such a space 𝑋𝑑 as a Banach sequence space. We will need the 

following standard concept related to Banach sequence spaces. 

Definition 1.1 Let 𝑋𝑑 denote a Banach sequence space. 

(i) 𝑋𝑑 is said to be solid if whenever {𝑐𝑘}𝑘=1
∞ ∈ 𝑋𝑑 and {𝑏𝑘}𝑘=1

∞  is any scalar-valued sequence such that |𝑏𝑘| ≤ |𝑐𝑘| 
for all 𝑘 ∈ ℕ, it follows that {𝑏𝑘}𝑘=1

∞ ∈ 𝑋𝑑 and ‖{𝑏𝑘}𝑘=1
∞ ‖ ≤ ‖{𝑐𝑘}𝑘=1

∞ ‖. 

(ii) 𝑋𝑑 is said to have an absolutely continuous norm if ‖{𝑐𝑘 − 𝑐𝑘𝜒𝐼𝑛
(𝑘)}

𝑘=1

∞
‖ → 

0 as 𝑛 → ∞ for any sequence {𝑐𝑘}𝑘=1
∞ ∈ 𝑋𝑑 and any family of subsets 𝐼𝑛 ⊂ ℕ such that 𝐼1 ⊂ 𝐼2 … ↑ ℕ. 

The above concepts have parallel versions in Banach function space, defined by obvious modifications; we will 

apply these without further comments in the sequel. 

1.1 Shift operators on Banach spaces 

Recall that a sequence {𝑒𝑘}𝑘=1
∞  in 𝑋 is a (Schauder) basis if every element 𝑥 ∈ 𝑋 has a unique representation 𝑥 =

∑𝑘=1
∞  𝑐𝑘𝑒𝑘 for some 𝑐𝑘 ∈ ℂ. It was proved by Enflo [19] that not all the  separable Banach spaces have a basis. Let 

𝑋 denote a Banach space having a basis {𝑒𝑘}𝑘=1
∞  and consider the left-shift and right-shift operators 

𝐿, 𝑅: span{𝑒𝑘}𝑘=1
∞ → 𝑋 given by 

𝐿𝑒1 = 0,  𝐿𝑒𝑘 = 𝑒𝑘−1,  𝑘 ≥ 2 (1.1) 

respectively, 

𝑅𝑒𝑘 = 𝑒𝑘+1,  𝑘 ∈ ℕ (1.2) 

https://www.ijfmr.com/
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Throughout the paper we will need that the operators 𝐿, 𝑅 extend to bounded linear operators on 𝑋. This condition 

in general depends not only on the space 𝑋 but also on the choice of the basis {𝑒𝑘}𝑘=1
∞ . We will show that the 

condition is satisfied if {𝑒𝑘}𝑘=1
∞  is a 𝑝-Riesz basis, a concept to be defined next. 

Definition 1.2 Fix some 𝑝 ∈ [1, ∞). A sequence {𝑒𝑘}𝑘=1
∞ ⊂ 𝑋 is called a pRiesz basis for 𝑋 if span{𝑒𝑘}𝑘=1

∞ = 𝑋 

and there exist constants 𝐴, 𝐵 > 0 such that 

𝐴 (∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

≤ ‖∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘‖ ≤ 𝐵 (∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

(1.3) 

for all finite scalar sequences {𝑐𝑘}𝑘=1
𝑁 , 𝑁 ∈ ℕ. The numbers 𝐴, 𝐵 are called lower, resp. upper bounds. 

Typically the lower condition in (1.3) is more involved to verify than the upper condition. A convenient criteria for 

the 𝑝-Riesz basis property, which avoids worrying about the lower bound, is stated next. 

Lemma 1.3 Assume that {𝑒𝑘}𝑘=1
∞  is a basis for a reflexive Banach space 𝑋, with dual basis {𝑒𝑘

∗}𝑘=1
∞ . Assume that 

for some 𝑝, 𝑞 > 1 with 𝑝−1 + 𝑞−1 = 1 there exists a constant 𝐵 > 0 such that 

(∑  

∞

𝑘=1

  |⟨𝑓, 𝑒𝑘
∗⟩|𝑝)

1/𝑝

≤ 𝐵‖𝑓‖,  ∀𝑓 ∈ 𝑋 

and 

(∑  

∞

𝑘=1

  |⟨𝑔, 𝑒𝑘⟩|𝑞)

1/𝑞

≤ 𝐵‖𝑔‖,  ∀𝑔 ∈ 𝑋∗ 

Then {𝑒𝑘}𝑘=1
∞  is a p-Riesz basis for 𝑋 and {𝑒𝑘

∗}𝑘=1
∞  is a 𝑞-Riesz basis for 𝑋∗. 

Proof. Let 𝑁 ∈ ℕ and {𝑐𝑘}𝑘=1
𝑁  be a finite scalar sequence. It follows by Hölder's inequality that 

 

‖∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘‖ = sup
𝑔∈𝑋∗,‖𝑔‖=1

  |⟨∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘 , 𝑔⟩| ≤ sup
𝑔∈𝑋∗,‖𝑔‖=1

 ∑  

𝑁

𝑘=1

  |𝑐𝑘||⟨𝑒𝑘 , 𝑔⟩|

 ≤ sup
𝑔∈𝑋∗,‖𝑔‖=1

 (∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

(∑  

𝑁

𝑘=1

  |⟨𝑔, 𝑒𝑘⟩|𝑞)

1/𝑞

 ≤ 𝐵 (∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

.

 

Also letting 𝑓: = ∑𝑘=1
𝑁  𝑐𝑘𝑒𝑘, we have that 𝑐𝑘 = ⟨𝑓, 𝑒𝑘

∗⟩ for 𝑘 = 1, … , 𝑛. Therefore 

(∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

= (∑  

𝑁

𝑘=1

  |⟨𝑓, 𝑒𝑘
∗⟩|𝑝)

1/𝑝

≤ 𝐵‖𝑓‖ = 𝐵 ‖∑  

𝑁

𝑘=1

 𝑐𝑘𝑒𝑘‖. 

This proves that {𝑒𝑘}𝑘=1
∞  is a 𝑝-Riesz basis for 𝑋 with bounds 𝐵−1 and 𝐵. The proof that {𝑒𝑘

∗}𝑘=1
∞  is a 𝑞-Riesz basis 

for 𝑋∗ is similar. 

We now prove that if {𝑒𝑘}𝑘=1
∞  is a 𝑝-Riesz basis for some 𝑝 ∈ [1, ∞), then indeed the left/right-shift operators with 

https://www.ijfmr.com/
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respect to {𝑒𝑘}𝑘=1
∞  are bounded: 

Proposition 1.4 If {𝑒𝑘}𝑘=1
∞  is a p-Riesz basis for 𝑋 with bounds 𝐴, 𝐵 for some 𝑝 ∈ [1, ∞), then the operators 𝐿, 𝑅 in 

(1.1) and (1.2) extend to bounded linear operators on 𝑋, and 

‖𝐿‖ ≤
𝐵

𝐴
  and  

𝐴

𝐵
≤ ‖𝑅‖ ≤

𝐵

𝐴
 

Proof. Given any finite sequence {𝑐𝑘}𝑘=1
𝑁 , 

‖𝐿 ∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘‖ = ‖∑  

𝑁

𝑘=2

  𝑐𝑘𝑒𝑘−1‖ = ‖∑  

𝑁−1

𝑘=1

  𝑐𝑘+1𝑒𝑘‖

 ≤ 𝐵 (∑  

𝑁−1

𝑘=1

  |𝑐𝑘+1|𝑝)

1/𝑝

≤ 𝐵 (∑  

𝑁

𝑘=1

  |𝑐𝑘|𝑝)

1/𝑝

 ≤
𝐵

𝐴
‖∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘‖

 

Thus 𝐿 extends to a bounded operator on 𝑋, with the claimed estimate of the norm. The proof for the boundedness 

of the right-shift operator and the upper estimate on its norm is similar. The lower bound on the norm of the operator 

𝑅 follows from 𝐿 being a left-inverse of 𝑅, i.e., ‖𝑓‖ = ‖𝐿𝑅𝑓‖ ≤ ‖𝐿‖‖𝑅𝑓‖ ≤ 𝐵𝐴−1‖𝑅𝑓‖ for all 𝑓 ∈ 𝑋. 

As an application of Proposition 1.4 we will now consider weighted ℓ𝑝 spaces. Fixing any 𝑝 ∈ [1, ∞) and 

considering a sequence of positive scalars {𝑤𝑘}𝑘=1
∞ , define the space ℓ𝑤

𝑝
 by 

ℓ𝑤
𝑝

: = {{𝑐𝑘}𝑘=1
∞ ∣ 𝑐𝑘 ∈ ℂ and ∑  

∞

𝑘=1

  |𝑐𝑘|𝑝𝑤𝑘 < ∞}. 

Obviously, ℓ𝑤
𝑝

 is a Banach space with respect to the norm 

‖{𝑐𝑘}𝑘=1
∞ ‖𝑝,𝑤: = (∑  

∞

𝑘=1

  |𝑐𝑘|𝑝𝑤𝑘)

1/𝑝

 

It is also clear that the canonical unit vectors {𝛿𝑘}𝑘=1
∞  form a basis for ℓ𝑤

𝑝
. The following result shows that in any 

weighted ℓ𝑝-space, we can specify a certain scaling of the canonical unit vectors that makes the left/right-shift 

operators bounded. 

Corollary 1.5 Fix any 𝑝 ∈ [1, ∞), consider a sequence of positive scalars {𝑤𝑘}𝑘=1
∞ , and let {𝛿𝑘}𝑘=1

∞  denote the 

canonical unit basis for ℓ𝑤
𝑝

. Let 𝑒𝑘: = 𝜔𝑘
−1/𝑝

𝛿𝑘. Then {𝑒𝑘}𝑘=1
∞  is a 𝑝-Riesz basis for ℓ𝑤

𝑝
 with bounds 𝐴 = 𝐵 = 1. 

In particular, the left/right-shift operators 𝐿, 𝑅 with respect to the basis {𝑒𝑘}𝑘=1
∞  are bounded, and ‖𝐿‖ = ‖𝑅‖ = 1. 

Proof. A simple calculation shows that for any 𝑁 ∈ ℕ and any finite scalar sequence {𝑐𝑘}𝑘=1
𝑁 , 

‖∑  

𝑁

𝑘=1

  𝑐𝑘𝑒𝑘‖

𝑝,𝜔

𝑝

= ∑  

𝑁

𝑘=1

|𝑐𝑘|𝑝 

Now by Proposition 1.4 the stated results for the right-shift operator 𝑅 follows immediately. It also follows that 

the left-shift operator 𝐿 is bounded and that ‖𝐿‖ ≤ 1. Since ‖𝐿𝑒2‖𝑝,𝑤 = ‖𝑒1‖𝑝,𝑤 = ‖𝑒2‖𝑝,𝑤, we finally conclude 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240631930 Volume 6, Issue 6, November-December 2024 5 

 

that ‖𝐿‖ = 1, as claimed. 

While the scaling of the basis in {𝛿𝑘}𝑘=1
∞  in Corollary 1.5 indeed makes the operators 𝐿 and 𝑅 bounded, the 

scaling might affect other conditions that are put on the basis, see., e.g., the condition (ii) in the forthcoming 

Theorem 2.2. For the case that it is most convenient to work with the canonical unit vector 

basis, we now characterize the weighted ℓ𝑝-spaces for which the left/right-shift operators are bounded with 

respect to {𝛿𝑘}𝑘=1
∞ . We leave the proof to the reader. 

Lemma 1.6 Fix any 𝑝 ∈ [1, ∞), consider a sequence of positive scalars {𝑤𝑘}𝑘=1
∞ , and let {𝛿𝑘}𝑘=1

∞  denote the 

standard basis for ℓ𝑤
𝑝

. Then the following holds true: 

(i) The left-shift operator 𝐿𝛿1 = 0, 𝐿𝛿𝑘 = 𝛿𝑘−1 ⋅ 𝑘 ≥ 2, extends to a bounded operator on ℓ𝑤
𝑝

 if and only if 

sup𝑘≥2  
𝑤𝑘−1

𝑤𝑘
< ∞; in the affirmative case, 

‖𝐿‖ = sup
𝑘≥2

  (
𝑤𝑘−1

𝑤𝑘
)

1/𝑝

 

(ii) The right-shift operator 𝑅𝛿𝑘 = 𝛿𝑘+1 extends to a bounded operator on ℓ𝑤
𝑝

 if and only if sup𝑘≥2  
𝑤𝑘

𝑤𝑘−1
< ∞; in 

the affirmative case, 

‖𝑅‖ = sup
𝑘≥2

  (
𝑤𝑘

𝑤𝑘−1
)

1/𝑝

 

Several constructions of 𝑝-Riesz bases are available in the literature. Let us mention an example in the setting of 

shift-invariant subspaces of 𝐿𝑝(ℝ) : 

Example 1.7 It is well-known [6] how to construct a function 𝜑 ∈ 𝐿2(ℝ) such that the set of integer-translates {𝜑(⋅
−𝑘)}𝑘∈ℤ form a Riesz basis for the Hilbert space 𝑆2: = span{𝜑(⋅ −𝑘)}𝑘∈ℤ. Requiring furthermore that 𝜑 belongs 

to the Wiener space, i.e., that ∑𝑘∈ℤ  ‖𝜑𝜒[𝑘,𝑘+1)‖
∞

< ∞, it is proved in [4] that for any 𝑝 ∈ [1, ∞) the family {𝜑(⋅

−𝑘)}𝑘∈ℤ is a 𝑝-Riesz basis for the subspace 𝑆𝑝 of 𝐿𝑝(ℝ) given by 

𝑆𝑝: = {∑  

𝑘∈ℤ

  𝑐𝑘𝜑(⋅ −𝑘) ∣ {𝑐𝑘}𝑘∈ℤ ∈ ℓ𝑝(ℤ)} 

Similar results are known in the setting of modulation spaces, introduced by Feichtinger in [20]. 

Let us finally mention that the definition of 𝑝-Riesz bases can be generalized in an obvious way to the so-called 𝑋𝑑-

Riesz bases [17]; here, the sequence space ℓ𝑝 is simply replaced by a general Banach sequence space 𝑋𝑑. Rather 

than going for the highest level of abstraction we have decided to state the results in the setting of 𝑝-Riesz bases, 

because this setting allows us to be very explicit and hereby facilitates concrete applications. 

2 Approximate operator representations 

The goal of this section is to derive approximate representations of sequences {𝑓𝑘}𝑘=1
∞  in a separable Banach space 

𝑋 of the form {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 for suitable choices of a vector 𝜑 ∈ 𝑋, a bounded operator 𝑇: 𝑋 → 𝑋, and the powers 

𝛼(𝑘), 𝑘 ∈ ℕ. We begin with the case where {𝑓𝑘}𝑘=1
∞  consists of "finite sequences" in Section 2.1. The results are 

generalized to "sufficiently fast decaying sequences" in Section 2.2. An alternative approach, tailored to the setting 

of Banach function spaces, is presented in Section 2.3. The purpose of Sections 2.4 − 2.5 is to apply the results in 

Sections 2.1-2.3 to the setting of atomic decompositions and Banach frames: we show how to design the 

approximations such that the sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 keeps essential features of the given sequence {𝑓𝑘}𝑘=1

∞ . 
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In order to facilitate reading of the next sections, we mention that the theoretical results in Sections 2.1-2.3 have a 

common structure: fixing arbitrary positive scalars {𝜖𝑘}𝑘=1
∞ ∈ ℓ1 that are chosen according to the desired level of 

approximation, they show how we for a given sequence {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋 can choose a vector 𝜑 ∈ 𝑋, a bounded operator 

𝑇: 𝑋 → 𝑋, and corresponding powers 𝛼(𝑘), 𝑘 ∈ ℕ, such that 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ∑  

∞

𝑗=𝑘+1

 𝜖𝑗 (2.1) 

Since the positive scalars {𝜖𝑘}𝑘=1
∞ ∈ ℓ1 are arbitrary, this implies that we for any given sequence {ℰ𝑘}𝑘=1

∞  of positive 

scalars can obtain that ‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ℰ𝑘. Indeed, assuming without loss of generality that the sequence {ℰ𝑘}𝑘=1
∞  

is decreasing and that ℰ𝑘 → 0 as 𝑘 → ∞, we obtain this inequality by applying (2.1) to any sequence {𝜖𝑘}𝑘=1
∞ ∈ ℓ1 

such that 𝜖𝑘 ≤ ℰ𝑘 − ℰ𝑘+1 for all 𝑘 ∈ ℕ. The consequences of an equality of the form (2.1) are considered in Sections 

2.4-2.5. 

2.1 Finite sequences in Banach spaces 

Let 𝑋 denote a separable Banach space having a basis {𝑒𝑘}𝑘=1
∞ . As standing assumption we need that the operators 

𝐿, 𝑅 defined in (1.1) extend to bounded linear operators on 𝑋. Choose 𝜆 > ‖𝑅‖ and consider the bounded 

operators 𝑇, 𝑆: 𝑋 → 𝑋 given by 

𝑇 = 𝜆𝐿,  𝑆 = 𝜆−1𝑅 (2.2) 

Note that by the choice of 𝜆 we have ‖𝑆‖ < 1, a condition that will be crucial in Theorem 2.1. We will first 

consider natural generalizations of finite sequences to the general Banach space 𝑋. Indeed, we will assume that 

each vector 𝑓𝑘 is a finite linear combination of vectors from the basis {𝑒𝑘}𝑘=1
∞ . Our approach 

and proof are inspired by a classical result by Rolewicz [28] in the setting of hypercyclic operators. 

Theorem 2.1 In the above setup, consider a sequence {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋 and assume that for every 𝑘 ∈ ℕ, there exists 

an integer 𝑁(𝑘) such that 𝑓𝑘 ∈ span{𝑒𝑗}
𝑗=1

𝑁(𝑘)
. Fixing any sequence {𝜖𝑘}𝑘=1

∞ ∈ ℓ1 consisting of positive numbers, 

choose a sequence {𝛼(𝑘)}𝑘∈ℕ of nonnegative integers such that 

𝛼(𝑘) − 𝛼(𝑘 − 1) ≥ max {
ln 𝜖𝑘 − ln ‖𝑓𝑘‖

ln ‖𝑆‖
, 𝑁(𝑘 − 1), 𝑁(𝑘)} ,  𝑘 ≥ 2(2.3) 

and let 

𝜑: = ∑  

∞

𝑗=1

 𝑆𝛼(𝑗)𝑓𝑗 (2.4) 

Then 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ∑  

∞

𝑗=𝑘+1

 𝜖𝑗 (2.5) 

Proof. For convenience of the proof, let 

𝑟𝑘: = max {
ln 𝜖𝑘 − ln ‖𝑓𝑘‖

ln ‖𝑆‖
, 𝑁(𝑘)} ,  𝑘 ∈ ℕ. (2.6) 

We first show that the vector 𝜑 in (2.4) is well-defined. To that end, let 𝜑𝑛: = ∑𝑗=1
𝑛  𝑆𝛼(𝑗)𝑓𝑗, 𝑛 ∈ ℕ. Then, for any 
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𝑚, 𝑛 ∈ ℕ with 𝑚 ≤ 𝑛, we have 

‖𝜑𝑛 − 𝜑𝑚‖ = ‖ ∑  

𝑛

𝑗=𝑚

 𝑆𝛼(𝑗)𝑓𝑗‖ ≤ ∑  

𝑛

𝑗=𝑚

‖𝑆‖𝛼(𝑗)‖𝑓𝑗‖. 

It follows from (2.6) that ‖𝑆‖𝑟𝑗‖𝑓𝑗‖ ≤ 𝜖𝑗 for all 𝑗 ∈ ℕ. Since ‖𝑆‖ < 1 and 𝛼(𝑘) > 𝑟𝑘 by (2.3) and the definition 

of 𝑟𝑘, it follows that 

‖𝜑𝑛 − 𝜑𝑚‖ ≤ ∑  

𝑛

𝑗=𝑚

‖𝑆‖𝑟𝑗‖𝑓𝑗‖ ≤ ∑  

𝑛

𝑗=𝑚

𝜖𝑗 → 0  as 𝑚, 𝑛 → ∞ 

Thus {𝜑𝑛}𝑛=1
∞  is a Cauchy sequence and hence 𝜑 is well-defined. We now prove that (2.5) holds. Fix 𝑘 ∈ ℕ and 

consider 𝑗 ∈ {1, … , 𝑘 − 1}. The inequality (2.3) implies that 

𝛼(𝑘) − 𝛼(𝑗) > 𝛼(𝑗 + 1) − 𝛼(𝑗) ≥ 𝑁(𝑗) 

Therefore for any 𝑗 < 𝑘, we have 𝑇𝛼(𝑘)−𝛼(𝑗)𝑓𝑗 = 0. Thus we can write 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ = ‖𝑓𝑘 − 𝑇𝛼(𝑘) ∑  

∞

𝑗=1

 𝑆𝛼(𝑗)𝑓𝑗‖

 = ‖∑  

𝑘−1

𝑗=1

 𝑇𝛼(𝑘)−𝛼(𝑗)𝑓𝑗 + ∑  

∞

𝑗=𝑘+1

 𝑆𝛼(𝑗)−𝛼(𝑘)𝑓𝑗‖

 = ‖ ∑  

∞

𝑗=𝑘+1

 𝑆𝛼(𝑗)−𝛼(𝑘)𝑓𝑗‖

 ≤ ∑  

∞

𝑗=𝑘+1

 ‖𝑆‖𝛼(𝑗)−𝛼(𝑘)‖𝑓𝑗‖

 

Now for 𝑗 > 𝑘, (2.3) implies 

𝛼(𝑗) − 𝛼(𝑘) ≥ 𝛼(𝑗) − 𝛼(𝑗 − 1) ≥ 𝑟𝑗. 

Therefore 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ∑  

∞

𝑗=𝑘+1

‖𝑆‖𝑟𝑗‖𝑓𝑗‖ ≤ ∑  

∞

𝑗=𝑘+1

𝜖𝑗 

as claimed. 

The key condition in Theorem 2.1 is that the left/right-shift operators with respect to a certain basis are bounded. 

Recall that Corollary 1.5 shows how to fulfill this condition in any weighted ℓ𝑝-space, 1 ≤ 𝑝 < ∞. It is typically 

significantly more complicated to verify boundedness of the shift operators on Banach function spaces than on 

Banach sequence spaces. For this reason we will formulate an alternative result in Section 2.3, tailored to the setting 

of Banach function spaces. 

2.2 Localized sequences in Banach spaces 

Next we will prove that Theorem 2.1 can be generalized to certain infinite sequences, provided their coordinates 
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decay "sufficiently fast". To motivate the exact formulation of the condition, assume for a moment that {𝑓𝑘}𝑘=1
∞  is 

a sequence in ℓ𝑝 for some 𝑝 ∈ (1, ∞). The canonical delta-sequence {𝑒𝑘}𝑘=1
∞  is an unconditional basis for ℓ𝑝 and 

its dual space (ℓ𝑝)∗, and the 𝑗𝑡ℎ coordinate in the vector 𝑓𝑘 is precisely ⟨𝑓𝑘, 𝑒𝑗⟩. A natural way of defining "fast 

decay" of the coordinates of 𝑓𝑘 is to require that there exist constants 𝐶, 𝛽 > 0 such that 

|⟨𝑓𝑘, 𝑒𝑗⟩| ≤ 𝐶𝑒−𝛽|𝑗−𝑘|,  ∀𝑗, 𝑘 ∈ ℕ (2.7) 

We will use exactly this idea, but formulated for a general basis for the Banach space 𝑋. 

Theorem 2.2 Let 𝑋 denote a Banach space with basis {𝑒𝑘}𝑘=1
∞  and associated dual basis {𝑒𝑘

∗}𝑘=1
∞ , and let 𝑋𝑑 be a 

solid Banach sequence space with an absolutely continuous norm, which contains the canonical unit vectors 
{𝛿𝑘}𝑘=1

∞ . Let {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋 and assume the followings: 

(i) The left/right-shift operators L, 𝑅 with respect to the given basis {𝑒𝑘}𝑘=1
∞  are bounded on 𝑋. Choose any 𝜆 >

‖𝑅‖. 

(ii) There exists a constant 𝐵 > 0 such that 

‖∑  

∞

𝑘=1

  𝑐𝑘𝑒𝑘‖ ≤ 𝐵‖{𝑐𝑘}𝑘=1
∞ ‖𝑋𝑑

 

for all finite sequences {𝑐𝑘}𝑘=1
∞ . 

(iii) There exist constants 𝐶 > 0 and 𝛽 > ln 𝜆 such that {𝑒−𝛽𝑗}
𝑗=1

∞
∈ 𝑋𝑑 and 

|⟨𝑓𝑘, 𝑒𝑗
∗⟩| ≤ 𝐶𝑒−𝛽|𝑗−𝑘| ∀𝑗, 𝑘 ∈ ℕ (2.8) 

Finally, fixing a sequence {𝜖𝑘}𝑘=1
∞ ∈ ℓ1 of positive scalars, choose a strictly increasing sequence of nonnegative 

integers {𝛼(𝑘)}𝑘=1
∞  such that for all 𝑘 ∈ ℕ, 

‖𝑆‖𝛼(𝑘)−𝛼(𝑘−1)‖𝑓𝑘‖𝑋 ≤ 𝜖𝑘/2 (2.9) 

Then 𝜑: = ∑𝑘=1
∞  𝑆𝛼(𝑘)𝑓𝑘 is well-defined. Moreover, by choosing 𝛼(1) = 0 and {𝛼(𝑘)}𝑘=2

∞  recursively such that 

𝛼(𝑘) ≥ 𝛼(𝑘 − 1) + 𝑘 − 2,  ∀𝑘 ≥ 2 (2.10) 

and 

𝛼(𝑘) >
ln (∑𝑗=𝑘+1

∞  𝜖𝑗)−ln (‖{𝑒−𝛽𝑗}
𝑗=1

∞
‖

𝑋𝑑

)−ln (∑𝑛=0
𝑘−1  (𝜆𝑒−𝛽)

−𝛼(𝑛)
𝑒𝛽𝑛)−ln (2𝐵𝐶)

ln (𝜆)−𝛽
, 

then 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑋

≤ ∑  

∞

𝑛=𝑘+1

𝜖𝑛,  ∀𝑘 ∈ ℕ 

Proof. First note that the infinite sum ∑𝑘=1
∞  𝑆𝛼(𝑘)𝑓𝑘 is absolutely convergent; indeed, by (2.9), 

∑  

∞

𝑘=1

‖𝑆𝛼(𝑘)𝑓𝑘‖
𝑋

≤ ∑  

∞

𝑘=1

‖𝑆‖𝛼(𝑘)‖𝑓𝑘‖𝑋 ≤ 1/2 ∑  

∞

𝑘=1

𝜖𝑘 < ∞ 

Thus 𝜑 = ∑𝑘  𝑆𝛼(𝑘)𝑓𝑘 is well-defined. Let 𝑘 ∈ ℕ, then 
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‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑋

≤ ∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖
𝑋

+ ‖ ∑  

∞

𝑛=𝑘+1

 𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖

𝑋

(2.12) 

We study the two terms at the right-hand side of the inequality separately. First, 

‖ ∑  

∞

𝑛=𝑘+1

 𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖

𝑋

 = ‖ ∑  

∞

𝑛=𝑘+1

 𝑆𝛼(𝑛)−𝛼(𝑘)𝑓𝑛‖

𝑋

≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆𝛼(𝑛)−𝛼(𝑘)𝑓𝑛‖
𝑋

 ≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆‖𝛼(𝑛)−𝛼(𝑘)‖𝑓𝑛‖𝑋

 ≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆‖𝛼(𝑛)−𝛼(𝑛−1)‖𝑓𝑛‖𝑋

 

Using (2.9), we get 

‖ ∑  

∞

𝑛=𝑘+1

 𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖

𝑋

≤ 1/2 ∑  

∞

𝑛=𝑘+1

  𝜖𝑛 (2.13) 

Now, for 𝑛 = 1, … , 𝑘 − 1, 

‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖
𝑋

 = ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛) ∑  

∞

𝑗=1

  ⟨𝑓𝑛, 𝑒𝑗
∗⟩𝑒𝑗‖

 = ‖𝜆𝛼(𝑘)−𝛼(𝑛) ∑  

∞

𝑗=𝛼(𝑘)−𝛼(𝑛)+1

  ⟨𝑓𝑛, 𝑒𝑗
∗⟩𝑒𝑗−𝛼(𝑘)+𝛼(𝑛)‖

 = ‖𝜆𝛼(𝑘)−𝛼(𝑛) ∑  

∞

𝑗=1

  ⟨𝑓𝑛, 𝑒𝑗+𝛼(𝑘)−𝛼(𝑛)
∗ ⟩𝑒𝑗‖ .

 

Using the condition (iii), we have |⟨𝑓𝑛, 𝑒𝑗+𝛼(𝑘)−𝛼(𝑛)
∗ ⟩| ≤ 𝐶𝑒−𝛽|𝑗+𝛼(𝑘)−𝛼(𝑛)−𝑛|; since 𝑋𝑑 is a solid Banach 

sequence space it follows that {⟨𝑓𝑛, 𝑒𝑗+𝛼(𝑘)−𝛼(𝑛)
∗ ⟩}

𝑘=1

∞
∈ 𝑋𝑑 and that 

‖{⟨𝑓𝑛, 𝑒𝑗+𝛼(𝑘)−𝛼(𝑛)
∗ ⟩}

𝑗=1

∞
‖

𝑋𝑑

≤ 𝐶 ‖{𝑒−𝛽|𝑗+𝛼(𝑘)−𝛼(𝑛)−𝑛|}
𝑗=1

∞
‖

𝑋𝑑

 

A standard argument (using that 𝑋𝑑 is assumed to have an absolutely continuous norm) shows that the condition 

(ii) actually implies that the stated inequality holds for all {𝑐𝑘}𝑘=1
∞ ∈ 𝑋𝑑; thus we arrive at 

‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖
𝑋

≤ 𝐵𝐶𝜆𝛼(𝑘)−𝛼(𝑛) ‖{𝑒−𝛽|𝑗+𝛼(𝑘)−𝛼(𝑛)−𝑛|}
𝑗=1

∞
‖

𝑋𝑑

 

Condition (2.10) implies that 𝑗 + 𝛼(𝑘) − 𝛼(𝑛) − 𝑛 ≥ 0. Thus 
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‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖
𝑋

 ≤ 𝐵𝐶𝜆𝛼(𝑘)−𝛼(𝑛) ‖{𝑒−𝛽(𝑗+𝛼(𝑘)−𝛼(𝑛)−𝑛)}
𝑗=1

∞
‖

𝑋𝑑

 = 𝐵𝐶𝜆𝛼(𝑘)−𝛼(𝑛) ‖𝑒−𝛽(𝛼(𝑘)−𝛼(𝑛)−𝑛){𝑒−𝛽𝑗}
𝑗=1

∞
‖

𝑋𝑑

 ≤ 𝐵𝐶(𝜆𝑒−𝛽)
𝛼(𝑘)−𝛼(𝑛)

𝑒𝛽𝑛 ‖{𝑒−𝛽𝑗}
𝑗=1

∞
‖

𝑋𝑑

 

If {𝛼(𝑘)}𝑘=1
∞  satisfies the growth condition specified in (2.11), then we conclude 

∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖
𝑋

≤ 1/2 ∑  

∞

𝑗=𝑘+1

  𝜖𝑗 (2.14) 

The result now follows from (2.12), (2.13) and (2.14). 

Example 2.3 Consider the Banach space 𝑋 = ℓ𝑤
𝑝

. As we proved in Corollary 1.5, the right/left-shift operators 𝐿, 𝑅 

defined with respect to the basis {𝑒𝑘}𝑘=1
∞ : = {𝑤𝑘

−1/𝑝
𝛿𝑘}

𝑘=1

∞
 are bounded and ‖𝐿‖ = ‖𝑅‖ = 1. Let 𝑋𝑑 = ℓ𝑝. 

Clearly ℓ𝑝 is a solid Banach space with absolutely continuous norm and it contains the canonical basis {𝛿𝑘}𝑘=1
∞ . 

Moreover, for every finite sequence {𝑐𝑘}, 

‖∑  𝑐𝑘𝑒𝑘‖
𝑋

= ‖{𝑐𝑘𝑤𝑘
−1/𝑝

}‖
𝑋

= (∑  |𝑐𝑘|𝑝)
1/𝑝

= ‖{𝑐𝑘}‖𝑋𝑑
 

Therefore all the conditions in Theorem 2.2 are satisfied. The dual basis of {𝑒𝑘}𝑘=1
∞  is given by 𝑒𝑘

∗ = 𝑤𝑘
1/𝑝

𝛿𝑘 , 𝑘 ∈

ℕ. Given any sequence {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋, as in Theorem 2.2, write 𝑓𝑘 = {(𝑓𝑘)𝑗}

𝑗=1

∞
. Then 

|⟨𝑓𝑘, 𝑒𝑗
∗⟩| = |(𝑓𝑘)𝑗|𝑤𝑗

1/𝑝
, 𝑗, 𝑘 ∈ ℕ 

This shows that in the setting of 𝑋 = ℓ𝑤
𝑝

, 𝑋𝑑 = ℓ𝑝, Theorem 2.2 applies to all sequences {𝑓𝑘}𝑘=1
∞  such that for 

some 𝐶, 𝛽 > 0, 

|(𝑓𝑘)𝑗| ≤ 𝐶𝑤𝑗
−1/𝑝

𝑒−𝛽|𝑗−𝑘|,  ∀𝑗, 𝑘 ∈ ℕ 

2.3 Banach function spaces 

The results in Sections 2.1-2.2 deal with general Banach spaces, having a basis with respect to which the shift 

operators 𝐿 and 𝑅 are bounded. This condition is often considerably more complicated to verify in Banach function 

spaces than in Banach sequence spaces. For this reason we will now consider the special case of Banach function 

spaces, but without any condition of knowledge of a basis such that the corresponding left/right-shift operators are 

bounded. In the entire section we let 𝑋 denote a Banach space of functions 𝑓: ℝ → ℂ. For 𝑎 ∈ ℝ, consider the 

translation operator 𝑇𝑎 acting on functions 𝑓: ℝ → ℂ 

by 𝑇𝑎𝑓(𝑥): = 𝑓(𝑥 − 𝑎). We say that 𝑋 is translation invariant if the translation operators 𝑇1 and 𝑇−1 map functions 

in 𝑋 into 𝑋; in this case, if 𝑇1 is bounded, it follows from the open mapping theorem that also 𝑇−1 is bounded. 

Assuming that 𝑋 is a solid Banach space and the translation operator 𝑇1 is bounded, consider now for any 𝜆 > ‖𝑇1‖ 

the weighted translation operators 𝑆, 𝑇: 𝑋 → 𝑋, 

𝑇𝑓 = 𝜆(𝑇−1𝑓)𝜒[0,∞),  𝑆𝑓 = 𝜆−1𝑇1𝑓,  𝑓 ∈ 𝑋 (2.15) 

Note that ‖𝑆‖ < 1 and that for 𝑘 ∈ ℕ, we have 𝑇𝑘𝑓 = 𝜆𝑘(𝑇−𝑘𝑓)𝜒[0,∞), 𝑓 ∈ 𝑋. 

Before stating the main result, Theorem 2.4, let us comment on one of the conditions in the statement of the result 

and various ways of circumventing it. We will consider a sequence {𝑓𝑘}𝑘=1
∞  of function in 𝑋 that are supported in 

[0, ∞). First, the choice of the interval [0, ∞) is not essential: the result immediately generalizes to functions 
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supported on any half interval [𝑎, ∞), 𝑎 ∈ ℝ, simply by replacing the characteristic function 𝜒[0,∞) in the 

translation operator 𝑇 defined in (2.15) by 𝜒[𝑎,∞). Next, if the sequence {𝑓𝑘}𝑘=1
∞  can be written as {𝑓𝑘}𝑘=1

∞ =

{𝑔𝑘}𝑘=1
∞ ∪ {ℎ𝑘}𝑘=1

∞  where supp𝑔𝑘 ⊂ [0, ∞) and supp ℎ𝑘 ∈ (−∞, 𝐿] for some 𝐿 ∈ ℝ, then a similar procedure as 

suggested in the particular case of a Hilbert space in [12] can be applied on {𝑔𝑘}𝑘=1
∞  and {ℎ𝑘}𝑘=1

∞  separately. In 

this case, the sequence {𝑔𝑘}𝑘=1
∞ ∪ {ℎ𝑘}𝑘=1

∞  can be approximated with a union of two suborbits, each associated 

with a bounded operator. We refer the interested reader to [12] for details. 

Theorem 2.4 Let 𝑋 denote a solid translation-invariant Banach function space with absolutely continuous norm, 

and assume that the translation operator 𝑇1 acts boundedly on 𝑋. Let 𝜆 > ‖𝑇1‖ and 𝜇 > 𝜆‖𝑇−1‖. Assume that 
{𝑓𝑘}𝑘=1

∞ ⊂ 𝑋 and supp𝑓𝑘 ⊂ [0, ∞). Also assume that for every 𝑘 ∈ ℕ, there exist 𝑎𝑘 ∈ ℕ and 𝐶𝑘 > 0 such that for 

every 𝑎 ≥ 𝑎𝑘, 

‖𝑓𝑘𝜒[𝑎,∞)‖ ≤ 𝐶𝑘𝜇−𝑎 (2.16) 

Fixing now a sequence {𝜖𝑘}𝑘=1
∞ ∈ ℓ1 of positive scalars, choose an increasing sequence {𝛼(𝑘)}𝑘=1

∞  of nonnegative 

integers such that 

‖𝑆‖𝛼(𝑘)−𝛼(𝑘−1)‖𝑓𝑘‖ < 1/2𝜖𝑘,  𝑘 ≥ 2 (2.17) 

Then 𝜑: = ∑𝑘=1
∞  𝑆𝛼(𝑘)𝑓𝑘 is well-defined. Furthermore, if we also assume that 𝛼(1) = 0 and 

𝛼(𝑘 + 1) − 𝛼(𝑘) ≥ 𝑎𝑘 ,  𝑘 ∈ ℕ (2.18) 

and 

𝛼(𝑘) ≥
ln (2) + ln (∑  𝑘−1

𝑛=1  𝐶𝑛((𝜆‖𝑇−1‖)−1𝜇)𝛼(𝑛)) − ln (∑  ∞
𝑗=𝑘+1   𝜖𝑗)

ln ((𝜆‖𝑇−1‖)−1𝜇)
(2.19) 

then 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ∑  

∞

𝑛=𝑘+1

𝜖𝑛 

Proof. For every 𝑚, 𝑛 ∈ ℕ, by (2.17) and since ‖𝑆‖ < 1, 

‖ ∑  

𝑁

𝑘=𝑚

 𝑆𝛼(𝑘)𝑓𝑘‖ ≤ ∑  

𝑁

𝑘=𝑚

 ‖𝑆‖𝛼(𝑘)‖𝑓𝑘‖

 < 1/2 ∑  

𝑁

𝑘=𝑚

  𝜖𝑘 → 0  as 𝑚, 𝑛 → ∞

 

As in the proof of Theorem 2.1, it follows that 𝜑 is well-defined. Also for 𝑘 ∈ ℕ, we have 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ ∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ + ‖ ∑  

∞

𝑛=𝑘+1

 𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ . (2.20) 

We now consider the two terms at the right-hand side of the inequality separately. First, using (2.17), we obtain 
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‖ ∑  

∞

𝑛=𝑘+1

 𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ = ‖ ∑  

∞

𝑛=𝑘+1

 𝑆𝛼(𝑛)−𝛼(𝑘)𝑓𝑛‖ ≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆𝛼(𝑛)−𝛼(𝑘)𝑓𝑛‖

 ≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆‖𝛼(𝑛)−𝛼(𝑘)‖𝑓𝑛‖ ≤ ∑  

∞

𝑛=𝑘+1

 ‖𝑆‖𝛼(𝑛)−𝛼(𝑛−1)‖𝑓𝑛‖

 ≤ 1/2 ∑  

∞

𝑛=𝑘+1

  𝜖𝑛

 

Next, we get 

∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ = ∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)−𝛼(𝑛)𝑓𝑛‖

 = ∑  

𝑘−1

𝑛=1

 ‖𝜆𝛼(𝑘)−𝛼(𝑛) (𝑇−1
𝛼(𝑘)−𝛼(𝑛)

𝑓𝑛) 𝜒[0,∞)‖

 = ∑  

𝑘−1

𝑛=1

 𝜆𝛼(𝑘)−𝛼(𝑛) ‖𝑇−1
𝛼(𝑘)−𝛼(𝑛)

(𝑓𝑛𝜒[𝛼(𝑘)−𝛼(𝑛),∞))‖

 ≤ ∑  

𝑘−1

𝑛=1

  (𝜆‖𝑇−1‖)𝛼(𝑘)−𝛼(𝑛)‖𝑓𝑛𝜒[𝛼(𝑘)−𝛼(𝑛),∞)‖

 

Since 𝑛 ≤ 𝑘 − 1, we have 𝛼(𝑘) − 𝛼(𝑛) ≥ 𝛼(𝑛 + 1) − 𝛼(𝑛) and therefore by (2.18), we get 𝛼(𝑘) − 𝛼(𝑛) ≥ 𝑎𝑛. 

Therefore, by (2.16), 

∑  

𝑘−1

𝑛=1

 ‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ ≤ ∑  

𝑘−1

𝑛=1

  (𝜆‖𝑇−1‖)𝛼(𝑘)−𝛼(𝑛)𝐶𝑛𝜇−(𝛼(𝑘)−𝛼(𝑛)) 

Now if 𝛼(𝑘) is chosen such that (2.19) holds, we have that 

𝛼(𝑘)ln ((𝜆‖𝑇−1‖)−1𝜇) ≥ ln (2) + ln (∑𝑛=1
𝑘−1  𝐶𝑛((𝜆‖𝑇−1‖)−1𝜇)𝛼(𝑛)) − ln (∑𝑗=𝑘+1

∞  𝜖𝑗) 

or 

𝛼(𝑘)ln (𝜆‖𝑇−1‖𝜇−1) + ln (∑𝑛=1
𝑘−1  𝐶𝑛((𝜆‖𝑇−1‖)−1𝜇)𝛼(𝑛)) ≤ ln (1/2∑𝑗=𝑘+1

∞  𝜖𝑗). 

Applying the exponential function on both sides of the inequality yields 

(𝜆‖𝑇−1‖𝜇−1)𝛼(𝑘) ∑  

𝑘−1

𝑛=1

𝐶𝑛((𝜆‖𝑇−1‖)−1𝜇)𝛼(𝑛) ≤ 1/2 ∑  

∞

𝑗=𝑘+1

𝜖𝑗, 

and from (2.21), we conclude that 

∑  

𝑘−1

𝑛=1

‖𝑇𝛼(𝑘)𝑆𝛼(𝑛)𝑓𝑛‖ ≤ 1/2 ∑  

∞

𝑗=𝑘+1

𝜖𝑗 

Using now (2.20) and the obtained estimates of the two terms, we obtain the desired result. 

In the next example we consider an important class of Banach spaces that satisfy all the conditions in Theorem 2.4. 

Example 2.5 Let 𝑚: ℝ → [0, ∞) be a continuous function and 𝑤: ℝ → [0, ∞) a 𝑚-moderate weight function, i.e., 

a measurable function such that 
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𝑤(𝑥 + 𝑦) ≤ 𝑚(𝑥)𝑤(𝑦),  ∀𝑥, 𝑦 ∈ ℝ 

For 1 ≤ 𝑝 < ∞, let 

𝐿𝑤
𝑝

(ℝ): = {𝑓: ℝ → ℂ |∫  
ℝ

 | 𝑓(𝑥)|

𝑝

𝑤(𝑥)𝑑𝑥 < ∞} 

Then 𝐿𝑤
𝑝

(ℝ) is a Banach space with respect to the norm 

‖𝑓‖𝐿𝑤
𝑝 = (∫  

ℝ

  |𝑓(𝑥)|𝑝𝑤(𝑥)𝑑𝑥)

1/𝑝

 

We leave it to the reader to verify that the norm is absolutely continuous, 𝐿𝑤
𝑝

(ℝ) is invariant under the translation-

operators 𝑇1, 𝑇−1, and that ‖𝑇−1‖ ≤ 𝑚(−1)1/𝑝 and ‖𝑇1‖ ≤ 𝑚(1)1/𝑝. 

In order to demonstrate the practical issues showing up in applications of Theorem 2.4, we will now consider so-

called Gabor systems. For 𝑏 ∈ ℝ, let 𝐸𝑏 : 𝐿2(ℝ) → 𝐿2(ℝ) be the modulation operator defined as 𝐸𝑏𝑔(𝑥) =
𝑒2𝜋𝑖𝑏𝑥𝑔(𝑥), 𝑥 ∈ ℝ. Fixing a function 𝑔 ∈ 𝐿2(ℝ) and some parameters 𝑎, 𝑏 > 0, the sequence of functions 

{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚,𝑛∈ℤ in 𝐿2(ℝ) is called a Gabor system. Since the translation operators and modulation operators clearly 

act boundedly on any 𝐿𝑝-space, 1 ≤ 𝑝 < ∞ as well, we will now assume that 𝑔 ∈ 𝐿𝑝(ℝ) and consider the Gabor 

system in 𝐿𝑝(ℝ) instead. Note that if the function 𝑔 is compactly supported, we can split the Gabor system into a 

union {𝑔𝑘}𝑘=1
∞ ∪ {ℎ𝑘}𝑘=1

∞  where supp𝑔𝑘 ⊂ [0, ∞) and suppℎ𝑘 ∈ (−∞, 𝐿] for some 𝐿 ∈ ℝ; thus, as explained just 

before the statement of Theorem 2.4 we can approximate the Gabor system using suborbits of two bounded 

operators. In the next example we will replace the assumption that 𝑔 has compact support by the assumption that 

supp 𝑔 ⊂ [0, ∞), and show how to obtain the estimate (2.16) for a certain ordering of a the "half Gabor system" 
{𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚∈ℤ,𝑛∈ℕ∪{0}. 

Example 2.6 Consider a function 𝑔 ∈ 𝐿𝑝(ℝ),1 ≤ 𝑝 < ∞, and assume that supp 𝑔 ⊂ [0, ∞) and that there exist 

constants 𝐶, 𝑑0 > 0 and 𝜇 > 1 such that for all 𝑑 ≥ 𝑑0 

(∫  
∞

𝑑

  |𝑔(𝑥)|𝑝𝑑𝑥)

1/𝑝

≤ 𝐶𝜇−𝑑 (2.22) 

Re-index the "half Gabor system" {𝐸𝑚𝑏𝑇𝑛𝑎𝑔}𝑚∈ℤ,𝑛∈ℕ∪{0} as {𝑓𝑘}𝑘=1
∞  in such a way that 𝑓𝑘 and 𝑓𝑘+1 differ with at 

most one translate by 𝑎, i.e., if 𝑓𝑘 = 𝐸𝑚𝑏𝑇𝑛𝑎𝑔 for some 𝑚 ∈ ℤ and 𝑛 ∈ ℕ then 𝑓𝑘+1 is one of the following functions 

𝐸𝑚𝑏𝑇(𝑛±1)𝑎𝑔,  𝐸(𝑚±1)𝑏𝑇𝑛𝑎𝑔 

Now, for 𝑘 ∈ ℕ, write 𝑓𝑘 = 𝐸𝑚𝑏𝑇𝑛𝑎𝑔, where 𝑛 ∈ {0,1, … , 𝑘} and 𝑚 ∈ ℤ. Then, considering any 𝑑 > 0, we have 

∫  
∞

𝑑

|𝑓𝑘(𝑥)|𝑝𝑑𝑥 = ∫  
∞

𝑑

|𝐸𝑚𝑏𝑇𝑛𝑎𝑔(𝑥)|𝑝𝑑𝑥 = ∫  
∞

𝑑

|𝑔(𝑥 − 𝑛𝑎)|𝑝𝑑𝑥 = ∫  
∞

𝑑−𝑛𝑎

|𝑔(𝑥)|𝑝𝑑𝑥 

For 𝑑 ≥ 𝑑0 + 𝑘𝑎, using that 𝑛 ∈ {0,1, … , 𝑘}, (2.22) yields 

(∫  
∞

𝑑

  |𝑓𝑘(𝑥)|𝑝𝑑𝑥)

1/𝑝

≤ 𝐶𝜇−(𝑑′−𝑛𝑎) ≤ (𝐶𝜇𝑘𝑎)𝜇−𝑑 

Thus, choosing 𝐶𝑘: = (𝐶𝜇𝑘𝑎) and 𝑑𝑘: = 𝑑0 + 𝑘𝑎, we have that for any 𝑑 ≥ 𝑑𝑘, 

‖𝑓𝑘𝜒[𝑑,∞)‖
𝑝

≤ 𝐶𝑘𝜇−𝑑 (2.23) 
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i.e., the condition (2.22) is satisfied. By a direct calculation, the "new technical assumption" (2.22) holds if, e.g., 

|𝑔(𝑥)| ≤ 𝑒−𝑥𝜒[0,∞),  ∀𝑥 ∈ ℝ 

indeed, in this we can take 𝐶 = 1/𝑝 and 𝜇 = 𝑒𝑝. Note that for 𝑝 = 2, the function ℎ(𝑥) = 𝑒−𝑥𝜒[0,∞) play a special 

role in Gabor analysis: it generates a Gabor frame {𝐸𝑚𝑏𝑇𝑛𝑎ℎ}𝑚,𝑛∈ℤ for 𝐿2(ℝ) if and only if 𝑎𝑏 ≤ 1, see [27]. 

2.4 𝜖-close approximations of {𝑓𝑘}𝑘=1
∞  

In this section we will pave the way for the application of the theoretical results in Section 2.5. To motivate what 

follows, consider again Theorem 2.1: for any given finite sequence {𝑓𝑘}𝑘=1
∞  in 𝑋 and any sequence {𝜖𝑘}𝑘=1

∞ ∈ ℓ1 of 

positive scalars it specifies how to choose 𝜑 ∈ 𝑋 and powers 𝛼(𝑘) such that for each 𝑘 ∈ ℕ the vector 𝑇𝛼(𝑘)𝜑 

belongs to a ball around 𝑓𝑘, with a radius specified by (2.5). The goal of typical approximation arguments is that 

the stated condition should imply that the approximating sequence - here {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 shares key features of the 

given sequence {𝑓𝑘}𝑘=1
∞ . In concrete cases this might call for extra conditions on the sequence {𝜖𝑘}𝑘=1

∞ ∈ ℓ1. Recall 

(see, e.g., [29]) that given a sequence {𝑓𝑘}𝑘=1
∞  in a Hilbert space ℋ, a sequence {𝑔𝑘}𝑘=1

∞ ⊂ ℋ is said to be 

quadratically close to {𝑓𝑘}𝑘=1
∞  if 

∑  

∞

𝑘=1

‖𝑓𝑘 − 𝑔𝑘‖2 < 1 

This concept is well-motivated. Indeed, if {𝑓𝑘}𝑘=1
∞  is an orthonormal basis for ℋ and {𝑔𝑘}𝑘=1

∞ ⊂ ℋ is quadratically 

close to {𝑓𝑘}𝑘=1
∞ , then {𝑔𝑘}𝑘=1

∞  is a Riesz basis for ℋ; see [29]. The following generalizes the concept of 

quadratically close sequences. 

Definition 2.7 Let {𝑓𝑘}𝑘=1
∞  be a sequence in a Banach space 𝑋. Given any 𝑝 ∈ [1, ∞) and any 𝜖 > 0, a sequence 

{𝑔𝑘}𝑘=1
∞ ⊂ 𝑋 is said to be 𝜖-close to {𝑓𝑘}𝑘=1

∞  with respect to ℓ𝑝 if 

∑  

∞

𝑘=1

 ‖𝑓𝑘 − 𝑔𝑘‖𝑝 ≤ 𝜖 (2.24) 

In the setting of Theorem 2.1, Theorem 2.2 or Theorem 2.4 we will now show how to ensure that the constructed 

sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 is 𝜖-close to the given sequence {𝑓𝑘}𝑘=1

∞ . Recall that on the structural level, the three 

mentioned results are similar: all of them ensure that for a given sequence {𝑓𝑘}𝑘=1
∞  in the considered Banach space 

and a fixed sequence {𝜖𝑗}
𝑗=1

∞
∈ ℓ1, the operator 𝑇, the vector 𝜑, and the powers 𝛼(𝑘) satisfy the inequality (2.1). 

Corollary 2.8 Let {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋. Fix a positive sequence {𝜖𝑗}

𝑗=1

∞
∈ ℓ1, and assume that the operator 𝑇: 𝑋 → 𝑋, 𝜑 ∈

𝑋, and powers 𝛼(𝑘), 𝑘 ∈ ℕ, have been constructed such that (2.1) is satisfied. Then the following holds true: 

(i) Let 𝜖𝑗: = 𝜖2−𝑗. Then the sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 is 𝜖-close to {𝑓𝑘}𝑘=1

∞  simultaneously for all 𝑝 ∈ [1, ∞). More 

precisely, it holds that for all 𝑝 ≥ 1, 

∑  

∞

𝑘=1

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑝

≤
𝜖𝑝

2𝑝 − 1
≤ 𝜖 

(ii) Fix any 𝑝 ∈ [1, ∞) and consider a weight sequence {𝑤𝑘}𝑘=1
∞  such that ∑𝑘=1

∞  
1

2𝑘𝑝 𝑤𝑘 < ∞. Let 𝑀: =

max {1, ∑𝑘=1
∞  

1

2𝑘𝑝 𝑤𝑘} and 𝜖𝑗: =
𝜖

𝑀
2−𝑗. Then 
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∑  

∞

𝑘=1

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑝

𝑤𝑘 ≤ 𝜖𝑝 

(iii) Consider a solid Banach sequence space 𝑋𝑑 for which {2−𝑘}𝑘=1
∞ ∈ 𝑋𝑑. Take 𝑀: = ‖{2−𝑘}𝑘=1

∞ ‖
𝑋𝑑

 and let 𝜖𝑗: =

𝜖/𝑀2−𝑗. Then 

‖{‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖}
𝑘=1

∞
‖

𝑋𝑑

≤ 𝜖 (2.25) 

Proof. For the proof of (i), just observe that 

∑  

∞

𝑘=1

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑝

≤ ∑  

∞

𝑘=1

( ∑  

∞

𝑗=𝑘+1

 
𝜖

2𝑗
)

𝑝

= 𝜖𝑝 ∑  

∞

𝑘=1

(
1

2𝑘
)

𝑝

=
𝜖𝑝

2𝑝 − 1
 

Similarly, under the assumptions in (ii), 

∑  

∞

𝑘=1

 ‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑝

𝑤𝑘 ≤ ∑  

∞

𝑘=1

 ( ∑  

∞

𝑗=𝑘+1

 𝜖/𝑀2−𝑗)

𝑝

𝑤𝑘

 = ∑  

∞

𝑘=1

  (𝜖/𝑀)𝑝
1

2𝑘𝑝
𝑤𝑘

 ≤ 𝜖𝑝𝑀1−𝑝 ≤ 𝜖𝑝

 

For the proof of (iii), Theorem 2.1 gives 

‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖ ≤ 𝜖/𝑀2−𝑘 (2.26) 

Since 𝑋𝑑 is a solid Banach sequence space and {2−𝑘}𝑘=1
∞ ∈ 𝑋𝑑, this implies {‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖}

𝑘=1

∞
∈ 𝑋𝑑  and that 

‖{‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖}
𝑘=1

∞
‖

𝑋𝑑

≤ ‖{𝜖/𝑀2−𝑘}𝑘=1
∞ ‖

𝑋𝑑
= 𝜖 

as claimed. 

2.5 Applications to atomic decompositions 

We will now apply the theoretical results to atomic decompositions in Banach spaces. Let us first state the 

definition: 

Definition 2.9 Consider a Banach space 𝑋, a Banach sequence space 𝑋𝑑, and two arbitrary sequences {𝑒𝑘}𝑘=1
∞ ⊂

𝑋 and {𝑒𝑘
∗}𝑘=1

∞ ∈ 𝑋∗. The pair ({𝑒𝑘}𝑘=1
∞ , {𝑒𝑘

∗}𝑘=1
∞ ) is called an atomic decomposition of 𝑋 with respect to 𝑋𝑑, with 

bounds 𝐴, 𝐵 > 0 , if 

(i) {⟨𝑥, 𝑒𝑘
∗⟩}𝑘=1

∞ ∈ 𝑋𝑑 for all 𝑥 ∈ 𝑋; 

(ii) 𝐴‖𝑥‖ ≤ ‖{⟨𝑥, 𝑒𝑘
∗⟩}𝑘=1

∞ ‖𝑋𝑑
≤ 𝐵‖𝑥‖ for all 𝑥 ∈ 𝑋; 

(iii) 𝑥 = ∑𝑘=1
∞  ⟨𝑥, 𝑒𝑘

∗⟩𝑒𝑘 for all 𝑥 ∈ 𝑋. 

Note that if ℋ is a separable Hilbert space and 𝑋𝑑 = ℓ2, the conditions (i)+(ii) automatically imply the existence 

of a sequence {𝑒𝑘}𝑘=1
∞ ∈ ℋ such that (iii) holds. This is well-studied in the literature on frames, see, e.g., [9]. On 

the other hand, in Banach spaces the so-called reconstruction property in (iii) does not follow from (i)+(ii) and has 

to be assumed separately. Regardless whether (i) + (ii) holds or not, the reconstruction property (iii) clearly holds 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240631930 Volume 6, Issue 6, November-December 2024 16 

 

if {𝑒𝑘}𝑘=1
∞  is a basis for the Banach space 𝑋 and {𝑒𝑘

∗}𝑘=1
∞  is the dual basis. "Genuine" atomic decompositions have 

been constructed, e.g., in [18, 21, 22, 30]. Stability conditions for atomic decompositions were studied in the 

paper [16]; more precisely, it was shown that if a sequence {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋 yields an atomic decomposition with 

respect to a sequence {𝑔𝑘}𝑘=1
∞ ⊂ 𝑋∗, then a sufficiently small perturbation {𝑓𝑘

′}𝑘=1
∞  of {𝑓𝑘}𝑘=1

∞  also yields an 

atomic decomposition with respect to a certain sequence {𝑔𝑘
′ }𝑘=1

∞ . The following result specifies how to ensure 

that the perturbation condition considered in [16] is satisfied in the current setting: 

Corollary 2.10 Assume that ({𝑓𝑘}𝑘=1
∞ , {𝑔𝑘}𝑘=1

∞ ) is an atomic decomposition of 𝑋 with respect to ℓ𝑝 for some 𝑝 ∈

[1, ∞), with bounds 𝐴, 𝐵. Take 𝜖𝑗 = 𝜖2−𝑗 for some 0 < 𝜖 < 𝐵−1. Then, if (2.1) holds, there exists a family 

{𝑔𝑘
′ }𝑘=1

∞ ∈ 𝑋∗ such that ({𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
, {𝑔𝑘

′ }𝑘=1
∞ ) is an atomic decomposition of 𝑋 with respect to ℓ𝑝, with bounds 

𝐴(1 + 𝜖𝐵)−1 and 𝐵(1 − 𝜖𝐵)−1. Moreover {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 is a basis for 𝑋 if and only if {𝑓𝑘}𝑘=1

∞  is a basis for 𝑋. 

Proof. Corollary 2.8 (i) implies that if {𝑓𝑘}𝑘=1
∞  satisfies the conditions stated in either Theorem 2.1, Theorem 2.2 

or Theorem 2.4 then for every finite sequence {𝑐𝑘}, 

‖∑  𝑐𝑘(𝑓𝑘 − 𝑇𝛼(𝑘)𝜑)‖
𝑋

 ≤ ∑  |𝑐𝑘|‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑋

 ≤ (∑  |𝑐𝑘|𝑝)
1/𝑝

(∑  ‖𝑓𝑘 − 𝑇𝛼(𝑘)𝜑‖
𝑋

𝑞
)

1/𝑞

 ≤ 𝜖‖{𝑐𝑘}‖.

 

The obtained inequality is a special case of the condition in Theorem 2.3 in [16], which immediately yields the 

stated conclusion. 

A more general way of obtaining decompositions in Banach spaces is obtained by considering Banach frames 

rather than atomic decompositions. While an atomic decomposition reconstructs an element 𝑥 ∈ 𝑋 using an 

infinite linear combination of the vectors {𝑒𝑘}𝑘=1
∞  with coefficients ⟨𝑥, 𝑒𝑘

∗⟩, 𝑘 ∈ ℕ, the definition of a Banach 

frame ensures the existence of a certain reconstruction operator, which maps the coefficients ⟨𝑥, 𝑒𝑘
∗⟩, 𝑘 ∈ ℕ, back 

to the vector 𝑥 ∈ 𝑋. Again based on a stability result from the paper [16] and in a completely similar fashion as 

the proof of Corollary 2.10, one can prove that if a sequence {𝑓𝑘}𝑘=1
∞ ⊂ 𝑋∗ generates a Banach frame with respect 

to a certain bounded operator, then an estimate of the type (2.1) implies that also the sequence {𝑇𝛼(𝑘)𝜑}
𝑘=1

∞
 

generates a Banach frame. Due to the similarity with Corollary 2.10 we will not go into details, but just stress the 

fact that due to the setting of Banach frames the application of our theoretical results will take place in the dual 

space 𝑋∗ for this particular case. 
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