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Abstract:  

In this paper, we investigate the laminar two-dimensional boundary-laver flow of a dusty fluid over a 

wedge. The mainstream flow outside the boundary- layer is considered in the form of the power of distance 

along the wedge surface. It is also considered that the wedge is moving with velocity 𝑈𝑤 opposite to the 

mainstream flows. The interest in boundary-layer flow over a wedge has gained considerable attention 

because of its wide range of application in various problems of atmospheric, engineering, physiological, 

industry and manufacturing process fields such applica- tions include polluting city air, motion of aerosols 

in the upper atmosphere, trans-port of suspended powdered materials through pipes, propulsion and 

combustion in rockets, continuous stretching of plastic films and flow of blood in arteries are some 

examples. Few examples of such technological process are the boundary layer along material handling 

convey ears and the boundary layer along a liquid film in condensation process. So the study of two 

dimensional boundary layer flow a wedge has gained much interest. The influence of dust particles on 

viscous flows has great importance in the petroleum industry and in the purification of crude oil. Other 

important in the boundary layer include soil erosion by natural winds and dust entrainment in a cloud 

during a nuclear explosion. This modelling results into the coupled partial differential equations which are 

transformed into ordinary differential equations using suitable similarity transformations. Numerical 

method based on Keller-box is used for the coupled system for various physical parameters such as non-

Newtonian fluid index parameter m, pressure gradient 𝛽, mass concentration Parameter 𝑀𝑐 and local fluid 

particle interaction parameter 𝜒. The detailed hydrodynamics behind these effects is discussed. 
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Introduction 

The  interest in boundary layer flow (BLF) over a wedge has gained considerable attention because of its 

wide range of application in various problems of atmospheric, engineering, physiological, industry and 

manufacturing process fields such applications include polluting city air, motion of aerosols in the upper 

atmosphere, transport of suspended powdered materials through pipes, propulsion and combustion in 

rockets, continuous stretching of plastic films and flow of blood in arteries are some examples. Few 

examples of such technological process are the boundary layer along material handling convey ears and 

the boundary layer along a liquid film in condensation process. So the study of two dimensional boundary 

layer flow a wedge has gained much interest. The influence of dust particles on viscous flows has great 

importance in the petroleum industry and in the purification of crude oil. Other important in the boundary 
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layer include soil ersion by natural winds and dust entrainment in a cloud during a nuclear explosion. 

Large number of researchers are engaged in this area. In order to get a complete and fundamental laws of 

physics by which the most general governing equations of continuity and momentum are obtained. 

Safman (1962) discussed on the stability of laminar flow of a dusty gas in which the dust particles are 

uniformly distributed. Alizadeh et al. (2009) studied the boundary laver equations of flow past a wedge 

with different angles by the Adomian de composition method. Afzal (2010) discussed the effects of the 

suction and injection on the laminar boundary layer flow of a viscous and incompressible fluid. Postelnicu 

and Pop (2011) studied of a power law fluid past a permeable stretching wedge considering variable free 

stream. 

We shall make simplifying assumptions about the motion of the dust particles. It will be supposed that the 

dust particles are uniform in size and shape, and that their velocity and number density can be described 

fields. We also assume that the bulk concentration of the dust is very small so that the net effect of the dust 

on the gas is equivalent to an extra force 𝐾𝑁(𝑣 − 𝑢) per unit volume, where 𝑢 = 𝑈𝑤 is the velocity of the 

gas and K is a constant, where it is also supposed that the Reynolds number of the relative motion of dust 

and gas is proportional to the relative velocity. Then with small bulk concentration and the neglect of the 

compressibility of the gas, the equations of motion and continuity of the gas are 

                             𝜌 (
𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢) = −∇𝑝 + 𝜇∇2𝑢 + 𝐾𝑁(𝑣 − 𝑢)                                 (1) 

                                                    ∇. 𝑢 = 0                                                                         (2) 

where 𝑝 is the pressure, 𝜌 and 𝜇 are the density and viscosity of the clean gas. If the dust particles are 

spheres of radius 𝑎, 𝐾 = 6𝜋𝑎𝜇 by the Stokes drag formula. In our study we consider the problem of 

Falkner-Skan equation on the laminar bound- ary layer flow of a viscous and incompressible dust fluid 

flow over a wedge. The effect of velocity and variables are taken in to account. Scaling group of 

transformations is used to present the similarity representations of the problem. Similarity equations are 

then solved numerically by using Keller-box method to show the effect of parameters we are considering. 

The basic idea of the Keller-box method is to write the governing system of coupled equations in the form 

of a first-order system. Using the finite different equations which are a second order accurate, we get 

nonlinear coupled algebraic equations that can be linearized and solved for. Then, a block-tridiagonal 

factorization scheme is applied on the linear system of equations and updated at each step. The governing 

equations are based on the boundary layer equation. 

 

Formulation of the problem 

Let us consider a two-dimensional laminar boundary layer flow of an incompressible viscous dusty fluid 

near an impermeable plane wall stretching with velocity 𝑈𝑤 . The outer free stream velocity is defined in 

the form of power-law manner i.e., it varies as a power of a distance from the leading edge. The velocity 

of potential flow is given by  𝑈(𝑥) = 𝑈∞(𝑥𝑚), where 𝑈∞ is constant, 𝑥 is measured from the stagnation 

point, the value of 𝑚 depends on the pressure gradient in the stream direction and wedge angled denoted 

by 𝜋𝛽. The flow considers around a wedge profile submerged in a fluid of very small viscosity. At the 

leading stagnation point o the thickness of the boundary layer is zero and it grows slowly towards the rear 

of the wedge. The pattern of streamlines and the velocity distribution deviate only slightly from those in 

the potential flow with the exception of the immediate vicinity of the wall. In this region we observed that 

a large velocity gradient are obtained. N. Datta and S. K. Mishra (1982) has developed the study of 

boundary layer flow of a dusty fluid over a semi- infinite flat plate. Under the usual boundary layer 
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approximation the equations of continuity and momentum of both the fluid phase and dust phase are given 

by 

                                               
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                             (3) 

 

                             𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦2
+

𝐾𝑁

𝜌𝜌𝑑

(𝑢𝑑 − 𝑢)                                   (4)    

                                               
𝜕𝑢𝑑

𝜕𝑥
+

𝜕𝑣𝑑

𝜕𝑦
= 0                                                                         (5) 

                          𝑢𝑑

𝜕𝑢𝑑

𝜕𝑥
+ 𝑣𝑑

𝜕𝑢𝑑

𝜕𝑦
=

𝐾𝑁

𝑀𝜌𝑑

(𝑢 − 𝑢𝑑)                                             (6)   

Where 𝑥 and 𝑦 represents co-ordinate axes along the continuous surface in the direction of motion and 

perpendicular to it respectively. (𝑢, 𝑣) and (𝑢𝑑 , 𝑣𝑑) denotes the velocity components of the fluid and 

particles phase along the 𝑥 and 𝑦 are directions respectively, 𝜈 is the kinematic viscosity of fluid, 𝜌 is the 

density of the fluid phase, and  𝜌𝑑is the density of the particle phase, 𝐾 is the Stokes resistance, 𝑁 is the 

number density of dust particles, 𝑀 is the mass concentration of dusty particles. Since the pressure is 

constant normal to the flow, it is a function of 𝑥. This means that pressure in the boundary layer is same 

as the pressure in the mainstream flow 𝑈𝑥 . 

The relevant boundary conditions are 

                                       at   𝑦 = 0:       𝑢 = 𝑈𝑤,     𝑣 = 0      

                                    as  𝑦 → ∞:       𝑢 = 𝑢𝑑 = 𝑈,    𝑣𝑑 →  𝑣                                          (7)                    

This region is specified by 𝑥 > 0 and it is clearly observed that the system (3) to (6) with four unknown 

functions 𝑢, 𝑣 𝑢𝑑   and 𝑣𝑑 are easily reduced to an equation with two unknown functions by defining the 

stream functions 𝜓(𝑥, 𝑦) and 𝜓𝑑(𝑥, 𝑦) by Datta and Mishra (1980). 

        𝑢 =
𝜕𝜓

𝜕𝑦
  ,  𝑣 = −

𝜕𝜓

𝜕𝑥
 ,   𝑢𝑑 =

𝜕𝜓𝑑

𝜕𝑦
 ,   𝑣𝑑 = −

𝜕𝜓𝑑

𝜕𝑥
                                                      (8) 

The continuity equations (3) and (5) for both fluid phase and particulate phase are satisfied. In terms of 

variables 𝜓 and 𝜓𝑑  the boundary layer equations (4) and (6) becomes 

𝜕𝜓

𝜕𝑦

𝜕2𝜓

𝜕𝑥𝜕𝑦
−

𝜕𝜓

𝜕𝑥

𝜕2𝜓

𝜕𝑦2
= 𝑈

𝑑𝑈

𝑑𝑥
+ 𝜈

𝜕3𝜓

𝜕𝑦3
+

𝐾𝑁

𝜌𝜌𝑑
(

𝜕𝜓𝑑

𝜕𝑦
−

𝜕𝜓

𝜕𝑦
)                                 (9)

𝜕𝜓𝑑

𝜕𝑦

𝜕2𝜓𝑑

𝜕𝑥𝜕𝑦
−

𝜕𝜓𝑑

𝜕𝑥

𝜕2𝜓𝑑

𝜕𝑦2
=

𝐾

𝑀𝜌𝑑
(

𝜕𝜓

𝜕𝑦
−

𝜕𝜓𝑑

𝜕𝑦
)                                                       (10)

 

with boundary conditions 

𝑦 = 0;  
𝜕𝜓

𝜕𝑦
= 𝑈𝑤(𝑥),  

𝜕𝜓

𝜕𝑥
= 0                                                                       (11)

 as 𝑦 → ∞:  
𝜕𝜓

𝜕𝑦
= −

𝜕𝜓𝑑

𝜕𝑦
= 𝑈(𝑥),  

𝜕𝜓

𝜕𝑥
→

𝜕𝜓𝑑

𝜕𝑥
                                                 (12)

 

The equation and boundary conditions above are reduced from equations (9) and (10), respectively for the 

case of steady flow. The similar solutions of equations (9) and (10) can be obtained of the following 

transformation 
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𝜂 =
𝑦

𝛿
  or  𝜂 =

𝑦

√
𝜈𝑥
𝑈1

                                                                                        (13)

𝜂 = √
𝑈

𝜈𝑥
𝑦𝐶 = √

𝑥𝑚−1𝑈1

𝜈
𝑦𝐶                                                                       (14)

    

where 𝐶 is the constant to be determined. The stream function in this transformation is obtained by 

integrating the continuity equation, we get 

𝜓 = ∫  𝑢𝑑𝑦 =
1

𝐶
√𝜈𝑈1𝑥

(𝑚+1)
2 𝑓(𝜂)                                                              (15)

𝜓𝑑 = ∫  𝑢𝑑𝑑𝑦 =
1

𝐶
√𝜈𝑑𝑈1𝑥

(𝑚+1)
2 𝑔(𝜂)                                                         (16)

2𝐶2 − 1 = 𝑚  or  𝐶 = √
1 + 𝑚

2
                                                                      (17)

 

from the equations (9) and (10), we get 

          𝑓′′′ + 𝑓𝑓′′ + 𝛽(1 − 𝑓′2) + 2𝑀𝑐𝜒(𝑔′ − 𝑓′) = 0                                         (18)                                  

𝑔𝑔′′ − 𝛽𝑔′2 + 2𝜒(𝑓′ − 𝑔′) = 0                                                                     (19) 

where prime denotes the differentiation with respect to 𝜂 and 𝛽 =
2𝑚

𝑚+1
, 𝑀𝑐 =

𝑁𝑀

𝛽
 is the mass 

concentration, 𝜒 =
2𝑥

𝑃𝐴(1+𝑚)𝜋𝑈
 is the local fluid particle interaction parameter and corresponding boundary 

conditions are given by 

 at 𝜂 = 0:  𝑓(0) = 0,  𝑓′(0) = 𝜆,                                                           

 as 𝜂 → ∞;  𝑓′(∞) = 1,  𝑔′(∞) = 1,  𝑔(∞) = 𝑓(∞).                                      (20)  
 

Introducing additional unknowns to convert the above system in to the first order coupled system like 

𝑓′ = 𝐻                                                                                                                   ( 21𝑎)

𝐻′ = 𝑉                                                                                                                    (21𝑏)

𝑔′ = 𝑇                                                                                                                    (21𝑐)
 

Equations (18)-(19) becomes 

𝑉′ + 𝑓𝑉 + 𝛽 − 𝛽𝐻2 + 2𝑀𝑐𝜒(𝑇 − 𝐻) = 0                                                             (22)

𝐵𝑇′ − 𝛽𝑇2 + 2𝜒(𝐻 − 𝑇) = 0                                                                                  (23)
 

The relevant boundary conditions are 

 at 𝜂 = 0:  𝑓(0) = 0,  𝐻(0) = 𝜆,                                                                             

 as  𝜂 → ∞:  𝐻(∞) = 1,  𝑇(∞) = 1,  𝑔(∞) = 𝑓(∞).                                 (24)
 

Using central finite difference operators for the system (21𝑎 − 21𝑐), in equations 

(22 and (23). The system of equations is exhibit system of nonlinear algebraic equations, which becomes 

difficult to solve. Therefore we linearize by them by introducing, for example 

[𝑓]𝑗
𝑘+1 = [𝑓]𝑗

𝑘 + [𝛿𝑓]𝑗
𝑘 

where [𝛿𝑗
𝑘] has to be corrected at each step, we drop product terms like 𝛿𝑓𝑗 , 𝛿𝑉𝑗 etc and also neglected 

square terms in 𝛿𝑓𝑗.  To solve equation (22) and (23) we use 𝐿𝑈 factorizing for decomposing in to a product 

of a lower triangular matrix 𝐿 and upper triangular matrix 𝑈 as follows 

𝐴 = 𝐿𝑈 

https://www.ijfmr.com/
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The equations (22), (23) and (24) can be put in algorithm. The coding and solution of the matrix can find 

by using Keller-box method 

 
Figure 1: Variation of fluid phase velocity profiles 𝒇′(𝜼) with 𝜼 for various values of 𝜷 when 𝝀 =

𝟏. 𝟓, 𝝌 = 𝟎. 𝟏, 𝑴𝒄 = 𝟎. 𝟏. 

 

 
Figure 2: Variation of fluid phase velocity profiles 𝒇′(𝜼) with 𝜼 for various values of 𝑴𝒄 when 𝝀 =

𝟏. 𝟓, 𝝌 = 𝟏. 𝟎, 𝜷 = 𝟐. 𝟎. 

 

 
Figure 3: Variation of fluid phase velocity profiles 𝒇′(𝜼) with 𝜼 for various values of 𝑴𝒄 when 𝝀 =

𝟏. 𝟓, 𝝌 = 𝟏. 𝟎, 𝜷 = 𝟏. 
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Figure 4: Variation of fluid phase velocity profiles 𝒇′(𝜼) with 𝜼 for various values of 𝝌 when 𝝀 =

𝟏. 𝟓, 𝑴𝒄 = 𝟏. 𝟎, 𝜷 = 𝟐.0. 

 

 
Figure 5: Variation of particle phase velocity profiles 𝒇′(𝜼) with 𝜼 for various values of 𝑴𝒄 when 

𝝀 = 𝟏. 𝟐, 𝝌 = 𝟎. 𝟏 , 𝜷 =0. 

 

 
Figure 6: Variation of particle phase velocity profiles 𝒈′(𝜼) with 𝜼 for various values of 𝑴𝒄 when 

𝝀 = 𝟏. 𝟐, 𝝌 = 𝟎. 𝟏, 𝜷 = 𝟎. 
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Figure 7: Variation of particle phase velocity profiles 𝒈′(𝜼) with 𝜼 for various values of 𝝌 when 

𝝀 = 𝟏. 𝟐𝟓, 𝑴𝒄 = 𝟎. 𝟗, 𝜷 = 𝟎. 

 

Results and discussion 

In this paper, we investigate two-dimensional boundary-layer flow of a dusty fluid over a wedge. 

Similarity transformations are used to convert the time independent non-linear boundary-layer equations 

into a system of non-linear ordinary differential equations. Numerical solutions are presented for highly 

non-linear boundary-layer equations. The numerical solutions have been carried out by Keller-box method 

to study the effect of various parameters such as pressure gradient parameter 𝛽, mass concentration 

parameter 𝑀𝑐 and local fluid particle interaction parameter 𝜒. The velocity profiles 𝑓′(𝜂) as a function of 

𝜂 for different values of the pressure gradient parameter 𝛽 by taking 𝜆 = 1.5, 𝜒 = 0.1, and 𝑀𝑐 = 0.1 in 

figure 1. It is shown that pressure gradient parameter 𝛽 increases the boundary-layer velocity and hence 

the thickness decreases when the other parameters 𝜒 and 𝑀𝑐 are held fixed. Also, it is noticed that all the 

curves approach their end-condition asymptotically, in fact quite faster for larger values of the pressure 

gradients. In a similar manner, from figure 2 and 3 , we observed that the mass concentration parameter 

𝑀𝑐 increases the fluid phase velocity in the boundary-layer and decreases the boundary-layer thickness. 

It is interesting to note that the thickness of boundary-layer decreases with increasing the values of 𝑀𝑐. It 

is further noticed that for higher values of 𝛽 , the boundary layer thickness becomes thinner as is clearly 

observed in figure 3 for the same parameter 𝑀𝑐. In figure 4 the velocity profiles are shown for different 

values of fluid-particle interaction parameter 𝜒. It is noticed from this figure that the velocity decreases 

with increasing values of 𝜒 for fluid phase in the boundary-layer. The effect of increasing value of 𝜒 is to 

reduce the velocity𝑓′(𝜂) and thereby making the boundary-layer thinner. Also it reveals that for large 

values of 𝜒 i.e. the relaxation time of the dust particle decreases. 

The variation of velocity profiles with 𝑔′(𝜂) with 𝜂 for different values of mass con- centration parameter  

𝑀𝑐 for dust phase has been illustrated in the figures 5 and 6. It is found that with an increase in the mass 

concentration parameter, the dust phase velocity decreases. This is due to the fact that, the dust particles 

are increased then dust fluid velocity automatically decreases and keeping other parameters fixed. 

Also the boundary-layer thickness decreases as mass concentration parameter 𝑀𝑐 increases. Although, 

there is a little variation in the dust phase profile but we anticipate that there is a rather appreciable 

difference in the corresponding hydrodynamics. We further expect the similar solution structure and 

hydrodynamics on the dust phase velocity behaviour when fluid particle interaction parameter 𝜒 is varied 

gradually in figure 7. Even in these figures, the all the curves approach mainstream flow asymptotically. 
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Conclusions 

This paper deals the two- dimensional boundary-layer flow of steady dusty fluid over an exponential 

stretching surface is considered. The similarity transformations are used the governing partial differential 

equations are reduced into set of non-linear ordinary differential equations are solved numerically by 

applying Keller-box method. The velocity of both fluid phase and dust phase profiles are obtained for 

various values of physical parameters like fluid interaction parameter 𝜒, mass concentration parameter 𝑀𝑐 

and pressure gradient parameter 𝛽. The fluid particle interaction parameter decreases the velocity 

components in the fluid phase and increases in the dust phase. 
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