

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

Object Detection Image Model

Arijeet Goswami

Student, University of Engineering and Management Kolkata

ABSTRACT

Object detection in images is a critical task in computer vision with wide-ranging applications in

autonomous driving, robotics, healthcare, surveillance, and more. Leveraging Artificial Intelligence (AI)

and Machine Learning (ML) techniques, significant advancements have been made in accurately

identifying and localizing objects within complex scene.

The integration of AI and ML allows these models to learn discriminative features through large

annotated datasets, reducing the need for manual feature engineering. Transfer learning and fine- tuning

of pre-trained models further improve efficiency and accuracy, especially in domain- specific

applications where data is scarce. Additionally, we discuss real-time detection techniques that balance

accuracy with speed, making them suitable for time-sensitive applications like real- time video analysis.

Challenges such as false positives, overlapping object detection, and the trade-off between precision and

recall are examined, along with emerging techniques like transformer-based models and the impact of

AI on future object detection tasks.

1. INTRODUCTION

1.1 About The Project:

Object detection is a pivotal task in computer vision, involving the identification and localization of

objects within images. With the advancement of Artificial Intelligence (AI) and Machine Learning

(ML), particularly deep learning techniques, object detection models have achieved remarkable accuracy

and efficiency.

AI-powered object detection is widely applied in fields like autonomous vehicles, surveillance,

healthcare, and augmented reality. The integration of ML allows these models to continually improve by

learning from large datasets, making them highly adaptable to new scenarios. Despite their successes,

challenges such as detecting objects in cluttered or dynamic environments, improving real-time

performance, and handling small or overlapping objects remain areas of ongoing research.

1.2 Objectives And Deliverables:

Object detection is a fundamental challenge in computer vision that involves identifying and localizing

objects within an image, often with the aim of recognizing multiple objects simultaneously. With the rise

of Artificial Intelligence (AI) and Machine Learning (ML), object detection techniques have seen

significant advancements, transforming applications across industries such as autonomous driving,

security surveillance, medical imaging, robotics, and retail.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

2. METHEDOLOGY

2.1 Flow Of Project:

Figure 1: IMAGE-RECOGNITION-Flow-Chart (Source: riset.guru)

The diagram represents a hierarchical process of object recognition in computer vision, breaking it down

into several stages:

1. Object Recognition: The broader task of identifying objects in an image.

2. Image Classification: A sub-task where an image is assigned a label based on the object it contains.

3. Object Localization: Involves determining the location of an object within the image, often by

drawing bounding boxes.

4. Object Detection: Combines object classification and localization to detect multiple objects and their

positions in an image.

5. Object Segmentation: The most detailed step, which involves partitioning the image into segments

where each pixel is assigned to an object, allowing for precise boundaries and distinctions.

Figure 1: VIDEO-RECOGNITION-Flow-Chart (Source: ResearchGate)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

The diagram illustrates a sequential process for object recognition in video sequences, breaking down the

steps as follows:

1. Video Sequence: The input to the process is a sequence of video frames.

2. Object Recognition: Identifies and interprets objects within the video frames.

3. Object Classification and Localization: These two parallel tasks involve classifying detected

objects into categories (Object Classification) and determining their precise location in the frames

(Object Localization).

4. Object Detection: Combines classification and localization to detect multiple objects and their

positions within the video frames.

5. Object Tracking: Once objects are detected, they are tracked across the video sequence, ensuring

consistent identification as they move through frames.

This flow emphasizes how video-based object detection extends from recognition to tracking, facilitating

continuous monitoring of objects in motion.

2.2 Language And Platform

Python and Google Colab

Python is a powerful, high-level programming language known for its simplicity, readability, and

extensive libraries, making it a popular choice for tasks ranging from web development to data science

and machine learning. Its versatility and supportive community have contributed to the rise of libraries

such as TensorFlow, PyTorch, and Scikit-learn, which are widely used in artificial intelligence (AI) and

machine learning (ML) projects.

Google Colab, or Google Colaboratory, is a cloud-based platform that allows users to write and execute

Python code in Jupyter notebooks. It is particularly useful for data scientists and ML practitioners, as it

provides free access to computational resources such as GPUs (Graphical Processing Units) and TPUs

(Tensor Processing Units). Colab is equipped with pre-installed libraries, making it easier to start coding

without the need for local setup.

Additionally, its integration with Google Drive allows for easy storage and collaboration, making it ideal

for research, experimentation, and team-based projects in AI and ML. Together, Python and Google

Colab provide a powerful, accessible environment for coding, experimentation, and collaboration in

machine learning, data analysis, and other computational tasks.

3. IMPLEMENTATION:

3.1 Model Creation

Imports:

• cv2: This is part of the OpenCV library, commonly used for computer vision tasks such as image

processing, object detection, and image classification.

• matplotlib.pyplot as plt: This is used to visualize images, graphs, or other data plots.

Model and Configuration Files:

• code_file: Refers to the location of a .pbtxt file. This is likely a configuration file that defines the

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

architecture of the object detection model.

• model_file: Refers to a .pb file. This is the frozen inference graph, which contains the pre- trained

weights for a model, most likely the SSD MobileNet V3 model, trained on the COCO dataset.

Loading the Model:

• The line model = cv2.dnn_DetectionModel(code_file, model_file) loads the object detection model

using OpenCV's DNN (Deep Neural Network) module. The code_file and model_file parameters

refer to the configuration and model weights files, respectively, as seen earlier.

Loading Class Labels:

• A list classLabels is initialized as empty.

• The code then opens a file named labels.txt located at "/content/labels.txt", which contains the labels

of the object categories (like 'person', 'bicycle', 'car', etc.).

• The file is read, and its contents are split by newline characters to create a list of labels that

correspond to the categories that the model can detect.

3.2 Setting Configuration For The Model

The model is configured with the following parameters:

• setInputSize(320, 320): Sets the input size of the model to 320x320 pixels.

• setInputScale(1.0/127.5): Normalizes the input by scaling the pixel values by dividing by 127.5.

• setInputMean((127.5, 127.5, 127.5)): Sets the mean values for each channel (RGB) to 127.5, which is

used for mean subtraction.

• setInputSwapRB(True): Swaps the Red and Blue channels, which is necessary for converting BGR to

RGB format.

The model object shown is of type cv2.dnn.Model.

This snippet is using OpenCV's Deep Neural Network (DNN) module to configure a pre- trained deep

learning model for inference, likely for tasks such as object detection, image classification, or image

segmentation. Here’s a more detailed breakdown of each part:

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

1. Input Size:

model.setInputSize(320, 320): The model's input size is set to 320x320 pixels. This resizes the input

image to match the expected input dimensions of the model. Neural networks often require a fixed-size

input, and resizing ensures that the image dimensions conform to what the model was trained on.

2. Input Scale:

model.setInputScale(1.0/127.5): This scales the input image’s pixel values by dividing them by 127.5.

The typical pixel range for an image is between 0 and 255. Dividing by 127.5 shifts the range to

approximately [-1, 1]. This normalization improves the model’s performance by ensuring that the input

data has a consistent scale, which is important for network stability during inference.

3. Input Mean:

model.setInputMean((127.5, 127.5, 127.5)): This subtracts the mean values for each channel (RGB). By

subtracting 127.5 from each channel, the pixel values are further centered around 0 (i.e., mean-centered).

This step ensures that the input image has values more similar to the training distribution, as many

models are trained on normalized data.

4. Swapping Color Channels:

model.setInputSwapRB(True): This swaps the Red and Blue channels in the image. OpenCV loads

images in BGR format by default, but many deep learning models, especially those trained with libraries

like TensorFlow or PyTorch, expect images in RGB format. This opkeration ensures the image channels

are aligned with the model's expectations.

Additional Context:

• These transformations (resize, normalization, mean subtraction, and channel swapping) are typical

preprocessing steps required before passing an image through a deep learning model.

• The cv2.dnn.Model is the OpenCV class that handles loading and running a pre- trained neural

network model for inference. This could be a model trained using popular frameworks like

TensorFlow, Caffe, or ONNX.

These settings are crucial for ensuring the input data matches the training data distribution, which

improves accuracy and reliability when making predictions or inferences with the model.

3.3 Loading Of Image Insde, The Model

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

Python code snippet that loads and displays an image using OpenCV and Matplotlib. Here is a summary

of the process:

1. Reading an Image:

• The code uses cv2.imread() to load an image from a file path. The path points to an image showing a

busy street in London, featuring double-decker buses, taxis, and other vehicles.

• The image format is .webp, a compressed image format commonly used for web images.

2. Displaying the Image:

• The loaded image is displayed using plt.imshow(img), a function from the Matplotlib library that

renders the image in the current plotting window.

• The displayed image showcases a London street scene, likely in December, as described by the file

name, with notable vehicles like taxis and double-decker buses.

The output shows a plot of the image with the axes (x and y) representing the pixel dimensions. The file

path hints at the image being related to London traffic and iconic vehicles like red double- decker buses.

code snippet that performs color conversion and displays the result using OpenCV and Matplotlib:

1. Color Conversion:

• The code uses cv2.cvtColor(img, cv2.COLOR_BGR2RGB) to convert the image from BGR (Blue-

Green-Red) to RGB (Red-Green-Blue) color format.

• OpenCV loads images in BGR format by default, but many plotting libraries like Matplotlib expect

images in RGB format. This conversion ensures proper color representation when displaying the

image.

2. Displaying the Image:

• The converted image is displayed using plt.imshow(), which is part of the Matplotlib library.

• The displayed image shows a typical London street scene with iconic vehicles such as red double-

decker buses and black cabs in traffic, possibly during winter, as hinted by the festive lights above

the street.

The color conversion ensures that the image appears correctly (with the correct colors) in the Matplotlib

plot.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 7

3.4 Detection Of Object By The Model

1. Detection Function:

• The function model.detect(img, confThreshold=0.55) is executed to perform object detection on the

provided image (img). The confidence threshold is set to 0.55, meaning only objects detected with a

confidence score of at least 55% will be considered valid.

2. Outputs:

• The function returns three values:

▪ classindex: The class labels of the detected objects, represented as indices.

▪ confidence: The confidence scores corresponding to each detection, indicating how certain the

model is about the class of each object.

▪ bbox: The bounding boxes for each detected object, describing their position and size in the

image.

3. classindex Output:

• When printing classindex, the output is [6, 3, 3, 3, 3, 10, 1, 1, 1, 10]. This array indicates the detected

class labels in the image.

▪ Class 6 appears once.

▪ Class 3 is detected four times, suggesting multiple objects of this class in the image.

▪ Class 10 appears twice.

▪ Class 1 is detected three times.

4. Success:

• The model has successfully detected multiple instances of various classes. This suggests that the

image contains objects from several categories, with class 3 being the most frequent.

5. Interpretation:

• These class indices likely map to specific categories (e.g., person, car, dog, etc.) based on the

model's training dataset. For further analysis, you'd need to reference the model's class labels to

understand what each index (e.g., 3, 6, 10, 1) corresponds to in real-world terms.

This setup indicates the model is functioning correctly, as it has detected multiple objects with varying

class indices in the image, demonstrating its ability to process and analyze the input data effectively.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 8

3.5 Providing Description For The Object Detected By Model For The Image

1. Code Overview:

• The code uses OpenCV functions like cv2.rectangle() and cv2.putText() to draw bounding boxes

around detected objects and label them with their respective class names.

• The bounding boxes are drawn in blue, and the labels (class names) are displayed in green text at the

top-left corner of each bounding box.

• The font used is FONT_HERSHEY_PLAIN, with a font scale of 3, and the text has a thickness of 3.

2. Visualization:

• The image shows a busy street scene with several objects detected and highlighted by the model.

• Detected objects include:

1. Bus: A red double-decker bus, which is detected and labeled in the middle of the image.

2. Cars: Several cars on the street are also detected and labeled.

3. Traffic Light: A traffic light is detected in the upper-right area of the image.

4. Person: A person is detected and labeled as well.

3. Bounding Boxes:

• The bounding boxes drawn around each detected object help to visually differentiate and localize the

objects in the scene.

• The detected objects are clearly labeled with their corresponding class names such as "Bus," "Car,"

"Person," and "Traffic Light."

4. Display:

• The processed image is displayed using matplotlib (plt.imshow()), converting the BGR image

(OpenCV default color space) to RGB for accurate display in matplotlib.

This visualization confirms the success of the object detection model in identifying and labeling multiple

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 9

objects in a real-world urban scene.

3.6 Object Detection By Video:

1. Video Input:

o The cv2.VideoCapture() function is used to open a video file (in this case, "Mumbai traffic.mp4") or

alternatively a webcam feed (cv2.VideoCapture(0)).

o If the video fails to open, an IOError is raised.

2. Font Settings:

o Font size and type are defined using font_scale=3 and cv2.FONT_HERSHEY_PLAIN to display text

on the video frames.

3. Object Detection Loop:

o The code enters an infinite loop (while True), where it continuously captures frames from the video.

o The detection model (model.detect()) is used to detect objects in the frame. It returns the class index

(object type), confidence score, and bounding box (bbox) coordinates for each detected object.

4. Processing Detections:

o For each detected object (if classindex is not empty), the following steps occur:

▪ A rectangle is drawn around the detected object using cv2.rectangle(), with color (255, 0, 0) (red) and

a thickness of 2.

▪ The detected object's class label (from classlabels[classindex-1]) is displayed above the bounding

box using cv2.putText(), along with the confidence score.

5. Frame Display:

o The updated frame, with detection annotations, is shown using cv2_imshow() (a Google Colab-

specific function to display images or video frames within the notebook environment).

6. Confidence Threshold:

o The confThreshold=0.55 ensures that only objects with a detection confidence greater than 55% are

considered valid for displaying.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 10

OBJECT-DETECTION OVER THE VIDEO

4. SAMPLE SCREENSHOTS AND OBSERVATIONS:

4.1 Detection of Object by the Model:

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 11

4.1 Object Detection By Video:

CONCLUSION

In conclusion, the object detection model demonstrated in the code efficiently captures and processes video

frames to identify and classify objects in real-time. By leveraging OpenCV for video processing and

drawing bounding boxes around detected objects, it provides a clear visual representation of detected

items along with their class labels and confidence scores. The use of a confidence threshold ensures that

only reliable detections are displayed. This setup serves as a strong foundation for further enhancements,

such as integrating advanced detection models or improving the user interface for broader applications in

real-world scenarios like traffic monitoring, security surveillance, or autonomous driving systems

FUTURE SCOPE

Integration with Advanced Deep Learning Models:

The future of object detection will see increased integration with more advanced deep learning models

such as YOLO (You Only Look Once), Faster R-CNN, or Vision Transformers (ViT). These models will

enable faster, more accurate detection of objects in real-time video streams, with applications ranging

from autonomous vehicles to industrial automation.

3D Object Detection and Augmented Reality (AR):

Future object detection models will move from 2D to 3D space, allowing for better depth perception and

interaction with the environment. This will open up new possibilities for AR and VR applications, where

real-time detection of objects in a 3D environment will enhance user experience in gaming, training

simulations, and interactive user interfaces.

Self-Supervised and Unsupervised Learning:

Traditional object detection models rely heavily on labeled datasets for training. The future will see an

increase in self-supervised or unsupervised learning methods, where models can learn to detect and

classify objects without extensive labeled data, making the training process more scalable and reducing

the dependence on manually annotated datasets.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR240632376 Volume 6, Issue 6, November-December 2024 12

8. REFERENCE:

1. ReserchGate. VIDEO-RECOGNITION-Flow-Chart. Available at

https://www.researchgate.net/figure/Flowchart-of-an-MOT-system_fig1_369644129

2. MUNGFALI. IMAGE-RECOGNITION-Flow-Chart. Available at

https://mungfali.com/post/886609AC84E63F5A59636F88CE7266AEE4A187E9/Object+Detectio

n+Flowchart

3. OBJECT DETECTION IMAGE MODEL PROJECT. Available at

https://github.dev/ArijeetGoswami/OBJECT-DETECTION-

MODEL/blob/main/OPEN_CV_FINAL_PROJECT.ipynb

https://www.ijfmr.com/
https://www.researchgate.net/figure/Flowchart-of-an-MOT-system_fig1_369644129
https://mungfali.com/post/886609AC84E63F5A59636F88CE7266AEE4A187E9/Object%2BDetection%2BFlowchart
https://mungfali.com/post/886609AC84E63F5A59636F88CE7266AEE4A187E9/Object%2BDetection%2BFlowchart
https://github.dev/ArijeetGoswami/OBJECT-DETECTION-MODEL/blob/main/OPEN_CV_FINAL_PROJECT.ipynb
https://github.dev/ArijeetGoswami/OBJECT-DETECTION-MODEL/blob/main/OPEN_CV_FINAL_PROJECT.ipynb
https://github.dev/ArijeetGoswami/OBJECT-DETECTION-MODEL/blob/main/OPEN_CV_FINAL_PROJECT.ipynb

