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Abstract 

The rapid deployment of 5G networks necessitates the development of secure, scalable, and efficient 

Internet of Vehicles (IoV) systems. Existing IoV solutions often struggle with real-time threat detection, 

scalability, efficient resource allocation, and privacy preservation. This work proposes an integrated 

framework leveraging blockchain technology, AI-driven anomaly detection, dynamic network slicing, 

and secure multi-party computations. We introduce AI-Driven Anomaly Detection and Mitigation 

(ADAM) to identify and respond to security threats in real-time. Utilizing Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), ADAM analyzes network traffic data to 

detect anomalies with a detection accuracy of 95%, a false positive rate of 2%, and an average response 

timestamp of 50 ms. To tackle scalability and latency issues inherent in traditional blockchain systems, 

we propose Edge-Based Blockchain Sharding (EBBS).The innovative use of a modified Proof-of-Stake 

(PoS) mechanism tailored for edge environments further enhances the scalability of the IoV system. AI-

Enabled Dynamic Network Slicing (ADNS) is implemented to optimize resource allocation based on 

real-time traffic demands and QoS requirements. Finally, we incorporate Secure Multi-Party 

Computation for Collaborative Data Processing (SMPC-CDP) to enable secure, privacy-preserving data 

analysis among IoV entities ensuring privacy with a computation overhead of 20%, and data utility 

preservation of 95%.  
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Introduction 

The advent of 5G technology heralds a new era of connectivity, with the Internet of Vehicles (IoV) 

emerging as a critical component of the smart transportation ecosystem. IoV integrates vehicles, 

infrastructure, and users, enabling seamless communication and data exchange to enhance traffic 

management, safety, and user experience. However, the realization of a robust IoV network demands 

solutions that can address stringent security, scalability, efficiency, and privacy requirements. 

Traditional approaches to IoV networking often fall short in several key areas: real-time threat detection, 

efficient resource allocation, latency reduction, and the preservation of data privacy. 

Security remains a paramount concern in IoV networks due to the heterogeneous and dynamic nature of 

the data exchanged. Existing methods for anomaly detection typically rely on static rule-based systems 
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or basic statistical models, which are inadequate for identifying sophisticated cyber threats. Furthermore, 

the centralized architecture of conventional blockchain systems poses significant challenges in terms of 

latency and scalability, undermining the performance of IoV networks. The need for efficient resource 

allocation is equally critical, as IoV applications have diverse Quality of Service (QoS) requirements 

that must be dynamically managed to ensure optimal network performance. Privacy preservation is 

another essential aspect, especially when sensitive data is shared among multiple entities within the IoV  

ecosystem. 

To address these challenges, this paper proposes an integrated framework that leverages advanced 

blockchain technology, AI-driven anomaly detection, dynamic network slicing, and secure multi-party 

computation. The proposed design incorporates several novel methods: 

• AI-Driven Anomaly Detection and Mitigation (ADAM): ADAM employs deep learning 

techniques, specifically Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), to analyze network traffic data and identify security threats in real-time. This approach 

significantly enhances the accuracy and response timestamp of threat detection compared to 

traditional methods. 

• Edge-Based Blockchain Sharding (EBBS): To improve scalability and reduce latency, EBBS 

implements a sharding mechanism at the edge nodes. This method partitions the blockchain ledger 

into smaller, manageable shards, each maintained by a subset of edge nodes. By distributing the 

computational load, EBBS achieves faster transaction processing and consensus mechanisms tailored 

for edge environments. 

• AI-Enabled Dynamic Network Slicing (ADNS): ADNS utilizes reinforcement learning to 

dynamically adjust network slice configurations based on real-time traffic demands and QoS 

requirements. This method ensures efficient resource utilization and high service quality, catering to 

the diverse needs of various IoV applications. 

• Secure Multi-Party Computation for Collaborative Data Processing (SMPC-CDP): SMPC-CDP 

enables secure, privacy-preserving data analysis by employing cryptographic techniques that allow 

multiple parties to jointly compute functions over their data without exposing individual data points. 

This method ensures data privacy while facilitating collaborative processing. 

The proposed framework addresses the critical limitations of existing IoV solutions by enhancing 

security, scalability, efficiency, and privacy preservation. This work represents a significant 

advancement in the field of IoV networks, providing a comprehensive and robust solution for the 

challenges associated with the deployment of 5G technology. Through rigorous evaluation and 

performance metrics, the proposed methods demonstrate their efficacy in meeting the stringent 

requirements of next-generation IoV systems. 

 

Literature review 

The advent of the Internet of Vehicles (IoV) has revolutionized transportation systems by enabling 

seamless communication and interaction among vehicles, infrastructure, and the surrounding 

environment. With the proliferation of connected vehicles and smart infrastructure, the need for robust 

security, efficient data exchange, and reliable authentication mechanisms has become paramount. 

Blockchain technology has emerged as a promising solution to address these challenges by providing 

decentralized, immutable, and secure data management systems. Recent research papers have 

extensively explored the application of blockchain in various aspects of IoV deployments. These papers 
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encompass a wide range of topics, including secure data collection and exchange, edge server 

deployment, privacy-preserving protocols, federated learning, access control mechanisms, trust 

management, charging services, traffic information interaction, reputation management, and emergency 

message transmission, among others. Each paper proposes innovative methodologies and frameworks 

tailored to enhance the security, efficiency, and reliability of IoV systems. For instance, Karim et al. [1] 

propose a Blockchain-Based Secure Data Collection and Exchange Scheme for IoV in 5G Environment 

(BSDCE-IoV), which leverages blockchain to secure data exchange and authentication in IoV. 

Similarly, Roy et al. [7] introduce a Blockchain-Based Efficient Access Control With Handover Policy 

in IoV-Enabled Intelligent Transportation System, enhancing access control and authentication 

mechanisms using blockchain in ITS. Other notable contributions include Zhao et al. [3] presenting the 

Privacy-Preserving Announcement Protocol With Blockchain-Based Trust Management for IoV 

(PBTM), Liu et al. [6] proposing a Conditional Privacy-Preserving Authentication Scheme With 

Hierarchical Pseudonym for 5G-Enabled IoV (CPAHP), and Ghimire et al. [4] introducing Efficient 

Information Dissemination in Blockchain-Enabled Federated Learning for IoV process. 

Moreover, the integration of blockchain with emerging technologies such as federated learning, edge 

computing, and cooperative positioning has garnered significant attention in recent research. For 

example, Zhang et al. [15] propose Blockchain-Based Intelligence Networking for Cooperative 

Positioning Towards Future Internet of Vehicles, which improves positioning accuracy and security in 

cooperative IoV environments using blockchain. Additionally, several papers focus on specific 

applications of blockchain in IoV, such as charging services, traffic monitoring, emergency message 

transmission, and battery life prediction. Li et al. [9] present an Intelligent and Fair IoV Charging 

Service Based on Blockchain With Cross-Area Consensus, ensuring fairness and efficiency in IoV 

charging services using blockchain. Ahmed et al. introduce a Blockchain-Based Emergency Message 

Transmission Protocol for Cooperative VANET, enhancing reliability and security in emergency 

message transmission using blockchain. Overall, these papers underscore the transformative potential of 

blockchain technology in enhancing the security, efficiency, and reliability of IoV systems. By 

leveraging blockchain for secure data management, authentication, privacy preservation, and trust 

management, researchers have proposed innovative solutions to address the evolving challenges faced 

by IoV deployments. However, further research is needed to address practical implementation 

challenges, scalability issues, and real-world deployment considerations to fully realize the potential of 

blockchain in IoV. The insights gained from these papers pave the way for future advancements in 

blockchain-enabled IoV ecosystems, ultimately contributing to safer, smarter, and more sustainable 

transportation systems. 

 

Proposed design  

To overcome issues of low computational efficiency and high deployment complexity which are present 

in current IoV Network Deployments, this section discusses design of an Iterative Method for 

Blockchain-Based Secure and QoS-Aware IoV Network Using AI-Driven Anomaly Detection and 

Dynamic Network Slicing Operations. Initially, as per figure 1, the AI-Driven Anomaly Detection and 

Mitigation (ADAM) process is designed & integrated to enhance the security of IoV networks by 

leveraging advanced deep learning techniques to detect and mitigate cyber threats in real-time scenarios. 

The core of ADAM integrates Convolutional Neural Networks (CNNs) and Recurrent Neural Networks 

(RNNs), exploiting their respective strengths in extracting spatial and temporal features from network 
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traffic data samples. The CNN component focuses on identifying spatial patterns within packet headers 

and flow statistics, while the RNN component captures temporal dependencies and sequence 

information critical for detecting anomalies over time. This hybrid approach ensures a comprehensive 

analysis of network traffic, leading to more accurate and timely anomaly detection. 

The first step in the ADAM process involves preprocessing the network traffic data, which includes 

extracting relevant features from packet headers and flow statistics. Let 𝑋∈𝑅𝑛×𝑚 represent the network 

traffic data matrix, where 𝑛 is the number of packets and 𝑚m is the number of features extracted per 

packet. The CNN layer processes this matrix to extract spatial features. The convolution operation in the 

CNN is described via equation 1, 

𝑍𝑖𝑗 = 𝑓 (∑∑𝑋(𝑖 + 𝑝, 𝑗 + 𝑞) ⋅ 𝑊(𝑝, 𝑞) + 𝑏

𝑄−1

𝑞=0

𝑃−1

𝑝=0

)…(1) 

Where, 𝑍𝑖𝑗 represents the output feature map, 𝑋(𝑖 + 𝑝, 𝑗 + 𝑞)  is the input patch, 𝑊(𝑝, 𝑞) is the 

convolution filter, 𝑏 is the bias term, and 𝑓(⋅) is the ReLU activation function. This operation is repeated 

across the entire input matrix to produce multiple feature maps, each highlighting different spatial 

characteristics of the network traffic data samples. Following the extraction of spatial features, these 

features are fed into the RNN component to capture temporal dependencies. The RNN, particularly a 

Long Short-Term Memory (LSTM) network, is utilized due to its ability to handle long-term 

dependencies and mitigate the vanishing gradient issue in real-time scenarios. The LSTM cell's 

operations are described via equations 2, 3, 4, 5, 6 & 7 as follows, 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑖)… (2) 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑓)… (3) 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝑜)… (4) 

 
Figure 1 Model Architecture of the Proposed IoV Deployment Process 

𝐶~𝑡 = 𝑡𝑎𝑛 ℎ(𝑊𝐶 ⋅ [ℎ(𝑡 − 1), 𝑥𝑡] + 𝑏𝐶)… (5) 

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶(𝑡 − 1) + 𝑖𝑡 ⊙ 𝐶~𝑡 … (6) 

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛 ℎ(𝐶𝑡)… (7) 

Where, , 𝑓𝑡, 𝑜𝑡, and 𝐶~𝑡 represent the input gate, forget gate, output gate, and cell candidate, 

respectively. ℎ𝑡 is the hidden state, 𝐶𝑡 is the cell state, 𝜎 represents the sigmoid function, and ⊙ 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240633108 Volume 6, Issue 6, November-December 2024 5 

 

represents the element-wise product. These equations describe how the LSTM processes each input 

sequentially, maintaining a memory of previous inputs to capture temporal patterns. The combination of 

CNN and RNN outputs is passed through a fully connected layer to produce the final anomaly score for 

each packet. The anomaly score 𝑆 for a given packet is computed via equation 8, 

𝑆 = 𝜎(𝑊𝑠 ⋅ ℎ𝑇 + 𝑏𝑠)… (8) 

Where, ℎ𝑇 is the final hidden state from the RNN, 𝑊𝑠 is the weight matrix, 𝑏𝑠 is the bias term, and 𝜎 is 

the sigmoid function. This score indicates the likelihood of the packet being anomalous. Scores above a 

predefined threshold trigger different mitigation actions, such as blocking the packet or alerting the 

network administrators. The justification for choosing this hybrid CNN-RNN model lies in its ability to 

comprehensively analyze network traffic data by leveraging both spatial and temporal features. CNNs 

are highly effective at identifying spatial patterns within data, which is crucial for detecting anomalies in 

packet structures and flow statistics. Meanwhile, RNNs, and specifically LSTMs, are adept at modeling 

sequential data, making them well-suited for capturing the temporal dynamics of network traffic. This 

complementary approach ensures that the model can detect a wide range of anomalies, from single-

packet deviations to more complex multi-packet patterns. 

Next, IoV Edge-Based Blockchain Sharding (EBBS) process is integrated which is a novel approach 

designed to address the inherent scalability and latency challenges of traditional blockchain systems in 

IoV networks. By partitioning the blockchain ledger into smaller, more manageable shards, each 

managed by a subset of edge nodes, EBBS significantly reduces computational load and enhances 

transaction processing efficiency. The proposed model ensures consistency across shards through a 

robust cross-shard communication protocol and achieves consensus using a modified Proof-of-Stake 

(PoS) mechanism tailored for edge environments. The first step in the EBBS process involves 

partitioning the blockchain ledger into 𝑘 shards, where each shard 𝑆𝑖 contains a subset of the total 

transactions 𝑇 for this process. Let 𝑇 represent the set of all transactions and 𝑇𝑖 the transactions assigned 

to shard 𝑆𝑖, which is represented via equation 9, 

𝑇 =⋃𝑇𝑖

𝑘

𝑖=1

, 𝑎𝑛𝑑, 𝑇𝑖 ∩ 𝑇𝑗 = ∅, 𝑓𝑜𝑟, 𝑖 ≠ 𝑗 … (9) 

Each shard 𝑆𝑖 is managed by a group of edge nodes 𝑁𝑖, responsible for processing and validating 

transactions within their respective shard. The transaction processing within a shard follows the standard 

blockchain validation protocols but is limited to the scope of the shard, thereby reducing the 

computational overhead. The transaction validation in shard 𝑆𝑖 is described via equation 10, 

𝑉𝑖(𝑡) = 𝜎 (∑𝑤𝑗 ⋅ 𝜙(𝑡, 𝑗) + 𝑏𝑖

∣𝑁𝑖∣

𝑗=1

)…(10) 

Where, 𝑉𝑖(𝑡) is the validation result for transaction 𝑡 in shard 𝑆𝑖, 𝜎 is the sigmoid function, 𝑤𝑗 represents 

the weight of the node 𝑗 in the validation process, 𝜙(𝑡,𝑗) is the function representing the node's validation 

of transaction 𝑡, and 𝑏𝑖 is the bias term for shard 𝑆𝑖 sets. To ensure consistency across shards, a cross-

shard communication protocol is implemented by this process. This protocol handles inter-shard 

transactions and ensures that state changes in one shard are accurately reflected in others. The 

consistency mechanism is formalized via equation 11, which ensures that the global state 𝐺 is a function 

of the union of all shard states 𝑆𝑖 as follows, 
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𝐺 = 𝑓 (⋃𝑆𝑖

𝑘

𝑖=1

)…(11) 

Where, 𝑓 is the function representing the global state derivation from individual shard states. This 

ensures that despite the partitioning, the blockchain maintains a coherent and unified states. Consensus 

within each shard is achieved through a modified Proof-of-Stake (PoS) mechanism, which is particularly 

suited for edge environments where computational resources are limited. In this PoS mechanism, nodes 

within each shard stake a certain amount of cryptocurrency to participate in the consensus process. The 

probability 𝑃𝑖 of node 𝑖 being selected as the validator is proportional to its stake 𝑆𝑖 is estimated via 

equation 12, 

𝑃𝑖 =
𝑆𝑖

∑ 𝑆𝑗∣𝑁𝑖∣
𝑗=1

…(12) 

This ensures that nodes with higher stakes have a higher probability of being selected, thereby 

incentivizing honest behavior and reducing the risk of malicious activities. The selection process is 

further refined by incorporating a reputation score , which is a function of the node's historical 

performance and reliability. The adjusted probability 𝑃𝑖′ for node 𝑖 being selected as a validator is 

expressed via equation 13, 

𝑃𝑖′ =
𝑆𝑖 ⋅ 𝑅𝑖

∑ 𝑆𝑗 ⋅ 𝑅𝑗∣𝑁𝑖∣
𝑗=1

…(13) 

This adjustment ensures that nodes with higher reputation scores are more likely to be selected, further 

enhancing the security and reliability of the consensus mechanism. The justification for choosing the 

EBBS model lies in its ability to effectively address the scalability and latency issues inherent in 

traditional blockchain systems. By partitioning the ledger and distributing the computational load across 

edge nodes, EBBS significantly improves transaction processing times and throughput. The cross-shard 

communication protocol ensures consistency across the network, maintaining the integrity and 

coherence of the blockchain. The modified PoS mechanism, tailored for edge environments, provides an 

efficient and secure consensus process that leverages the unique capabilities of edge nodes. 

Next, IoV AI-Enabled Dynamic Network Slicing (ADNS) process is integrated, which is a cutting-edge 

approach designed to enhance the efficiency and QoS of IoV networks by dynamically adjusting 

network slice configurations based on real-time traffic patterns. This process employs reinforcement 

learning (RL) to predict traffic demands and optimize resource allocation, ensuring the efficient use of 

network resources while meeting the diverse QoS requirements of various IoV applications. The RL 

agent, central to this process, continuously learns from real-time feedback on network performance and 

iteratively refines its slicing strategy. 

The ADNS process begins with the RL agent observing the state of the network, represented by 𝑆𝑡, 

which includes real-time traffic data, current slice configurations, and available resources at timestamp 𝑡 

sets. The agent then selects an action , which corresponds to a specific adjustment in the network slice 

configuration. The state 𝑆𝑡 is expressed as a vector of observed parameters, represented via equation 14, 

𝑆𝑡 = [𝑇𝑡, 𝐶𝑡, 𝑅𝑡]… (14) 

Where, 𝑇𝑡 represents the traffic demands, 𝐶𝑡 represents the current slice configurations, and 𝑅𝑡 indicates 

the available network resources. The action 𝐴𝑡 modifies the slice configuration to better align with the 

predicted traffic demands. The RL agent's objective is to maximize the cumulative reward 𝑅, which 
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reflects the QoS performance of the network over temporal instance sets. The reward function 𝑅𝑡 at 

timestamp 𝑡 is formulated via equation 15, 

𝑅𝑡 =∑(𝑤𝑖 ⋅ 𝑄𝑖(𝑡)) − 𝜆 ⋅ 𝑈(𝑡)

𝑛

𝑖=1

…(15) 

Where, (𝑡) is the QoS satisfaction for slice 𝑖, 𝑤𝑖 is the weight assigned to slice 𝑖 based on its priority, and 

𝑈(𝑡) represents the total resource utilization. The term 𝜆 is a regularization parameter that balances the 

trade-off between QoS satisfaction and resource efficiency. To predict traffic patterns and make 

informed decisions, the RL agent employs a policy 𝜋, which maps states to actions. The policy 𝜋 is 

updated based on the observed rewards using policy gradient methods. The policy gradient ∇(𝜃) with 

respect to the policy parameters 𝜃 is given via equation 16, 

𝛻𝐽(𝜃) = 𝐸𝜋𝜃[𝛻𝜃 𝑙𝑜𝑔 𝜋𝜃(𝐴𝑡 ∣ 𝑆𝑡 ) ⋅ 𝑅𝑡]… (16) 

This operation captures the expected gradient of the cumulative reward, guiding the adjustment of the 

policy parameters to improve network performance. The RL agent uses this gradient to update its policy 

iteratively, refining its ability to optimize slice configurations.  The temporal dynamics of network 

traffic are modeled using a value function (𝑆𝑡), which estimates the expected cumulative reward from 

state 𝑆𝑡 under policy 𝜋 sets. The Bellman Process for the value function is given via equation 17, 

𝑉𝜋(𝑆𝑡) = 𝐸𝜋[𝑅𝑡 + 𝛾𝑉𝜋(𝑆(𝑡 + 1))]… (17) 

Where, 𝛾 is the discount factor that prioritizes immediate rewards over future rewards. This recursive 

equation enables the RL agent to estimate the long-term impact of its actions on network performance, 

facilitating more effective decision-making process. The optimal slice configuration 𝐶𝑡∗  is determined 

by maximizing the value function over all possible actions, represented via equation 18, 

𝐶𝑡 ∗= 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑡𝑉𝜋(𝑆𝑡, 𝐴𝑡) … (18) 

This optimization ensures that the selected action 𝐴𝑡At yields the highest expected cumulative reward, 

aligning the slice configuration with current traffic demands and QoS requirements. The justification for 

adopting the ADNS model lies in its ability to adaptively manage network resources in response to 

dynamic traffic patterns and QoS requirements. Traditional static slicing approaches fail to 

accommodate the variability in IoV traffic, leading to suboptimal resource utilization and degraded QoS. 

By leveraging RL, the ADNS process continuously learns and adapts, ensuring efficient and responsive 

network management. This method complements other approaches by integrating real-time feedback and 

predictive modeling, providing a robust framework for dynamic network slicing in IoV environments. 

Finally, the IoV Secure Multi-Party Computation for Collaborative Data Processing (SMPC-CDP) 

process is integrated, which is an advanced cryptographic framework designed to enable multiple parties 

to jointly compute functions over their data while preserving the privacy of individual inputs. This 

process ensures that sensitive data is never exposed, even during computation, by employing secure 

multi-party computation (SMPC) protocols. The model leverages homomorphic encryption and secret 

sharing techniques to securely process encrypted inputs, and the final results are decrypted only by 

authorized parties, maintaining privacy throughout the entire computation. In the SMPC-CDP process, 

each party 𝑃𝑖 encrypts its data 𝑥𝑖 using a homomorphic encryption scheme. Let (𝑥𝑖) represent the 

encrypted data of party 𝑃𝑖 sets. The homomorphic property allows computations to be performed 

directly on encrypted data samples. If 𝐸 is an encryption function and ⊕ represents the homomorphic 

operation corresponding to addition, then for two plaintexts 𝑥 and 𝑦 via equation 19, 

𝐸(𝑥) ⊕ 𝐸(𝑦) = 𝐸(𝑥 + 𝑦)… (19) 
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This property is crucial for enabling secure computations on encrypted data without decrypting it in the 

process. The parties collaborate to compute a joint function 𝑓 over their encrypted inputs & scenarios. 

To achieve this, the parties follow an SMPC protocol, where the function 𝑓 is expressed as a series of 

operations that is performed homomorphically. The function 𝑓 is represented via equation 20, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑔(𝐸(𝑥1), 𝐸(𝑥2), … , 𝐸(𝑥𝑛))… (20) 

Where, 𝑔 is the function performed on encrypted data samples. Each operation within 𝑔 respects the 

homomorphic properties, ensuring that the computations remain secure. The intermediate results of the 

computation are also encrypted, and the final encrypted result (𝑅) is obtained. To ensure that only 

authorized parties can decrypt the final result, a decryption key 𝑘 is shared among the parties using a 

secret sharing scheme. Let 𝑘 be split into 𝑛 shares 𝑘𝑖 such that any 𝑡 out of 𝑛 shares can reconstruct the 

key. This is represented by Shamir's Secret Sharing scheme via equation 21, 

𝑘 =∑𝜆𝑖 ∗ 𝑘𝑖

𝑡

𝑖=1

…(21) 

Where, 𝜆𝑖 are the Lagrange coefficients. The final decryption is performed collaboratively by combining 

the shares 𝑘𝑖ki from the authorized parties. The security and correctness of the SMPC-CDP process is 

demonstrated through a series of operations that encapsulate the encryption, computation, and 

decryption steps. The first process represents the encryption of individual inputs via equation 22, 

𝐸(𝑥𝑖) = 𝐸(𝑥𝑖, 𝑝𝑘)… (22) 

Where, 𝐸 is the encryption function, and 𝑝𝑘 is the public key used for encryption. The second operation 

describes the homomorphic addition of encrypted values via equation 23, 

𝐸(𝑥1) ⊕ 𝐸(𝑥2) = 𝐸(𝑥1 + 𝑥2)… (23) 

This property is extended to the general computation 𝑔 over multiple encrypted inputs for different 

scenarios. The third operation represents the secure computation of the function 𝑓 via equation 24, 

𝑔(𝐸(𝑥1), 𝐸(𝑥2), … , 𝐸(𝑥𝑛)) = 𝐸(𝑓(𝑥1, 𝑥2,… , 𝑥𝑛))… (24) 

The fourth operation involves the reconstruction of the decryption key using secret shares via equation 

25, 

𝑘 =∑𝜆𝑖 ∗ 𝑘𝑖

𝑡

𝑖=1

…(25) 

Finally, the fifth operation represents the decryption of the final result via equation 26, 

𝑅 = 𝐷(𝐸(𝑅), 𝑘)… (26) 

Where, 𝐷 is the decryption function, and 𝑅 is the decrypted result. The justification for adopting the 

SMPC-CDP model lies in its robust privacy-preserving capabilities, essential for secure collaborative 

data processing in IoV environments. Traditional methods often expose data during computation, posing 

significant privacy risks. The SMPC-CDP process mitigates these risks by ensuring that data remains 

encrypted throughout the computation, only revealing the final result to authorized parties. This method 

complements other security measures by providing a framework that guarantees data privacy without 

compromising computational accuracy or efficiency. The SMPC-CDP process effectively addresses the 

privacy concerns inherent in IoV networks, facilitating secure and collaborative data analysis. By 

leveraging homomorphic encryption and secret sharing, the model ensures that sensitive data is 

protected at all stages of computation. The detailed equations encapsulate the encryption, computation, 

and decryption steps, demonstrating the technical depth and rigor of the proposed method. This approach 
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represents a significant advancement in privacy-preserving data processing, providing a robust solution 

for the challenges associated with collaborative IoV data analysis. Next, we discuss efficiency of this 

model in terms of different performance metrics, and compare it with existing methods for different 

scenarios. 

 

Comparative results analysis 

The experimental setup for evaluating the proposed IoV framework, integrating AI-Driven Anomaly 

Detection and Mitigation (ADAM), Edge-Based Blockchain Sharding (EBBS), AI-Enabled Dynamic 

Network Slicing (ADNS), and Secure Multi-Party Computation for Collaborative Data Processing 

(SMPC-CDP), involves a comprehensive simulation environment designed to mimic real-world IoV 

scenarios. Conducted on a high-performance computing cluster with 64-core Intel Xeon processors, 512 

GB of RAM, and 10 Gbps network interfaces, the IoV network topology consists of 50 edge nodes, 10 

relay nodes, and 500 vehicles. Experiments are conducted over a 24-hour simulation period with data 

collected at one-second intervals. For ADAM, network traffic data includes routine V2V and V2I 

communications, and simulated cyber-attacks like DDoS and MITM, using parameters such as source IP 

192.168.1.1, destination IP 192.168.1.2, source port 12345, destination port 80, protocol TCP, packet 

count 100, byte count 1500, and flow duration 2 seconds. CNN and RNN models, trained on a dataset of 

1 million labeled packets (70% training, 15% validation, 15% testing), are evaluated for detection 

accuracy, false positive rate, and response delays. EBBS involves blockchain transactions for vehicle 

registrations, insurance verifications, and toll payments, with input parameters including transaction 

volume of 1000 tps, shard count of 10, and edge node capacity of 500 tps per node. The effectiveness of 

the cross-shard communication protocol is measured based on consistency maintenance and latency 

reduction, while the modified PoS mechanism's effectiveness is assessed by timestamp to consensus and 

computational overhead on edge nodes. ADNS utilizes real-time traffic data (vehicle count 300, average 

speed 60 km/h, data rate 5 Mbps) to adjust network slices based on QoS requirements (latency <50 ms, 

bandwidth 10 Mbps, reliability 99.9%, bandwidth capacity 1 Gbps, processing power 200 GHz). The RL 

agent's performance is evaluated on resource utilization, QoS satisfaction rate, and latency reduction, 

with policy updates based on real-time feedback. SMPC-CDP is tested with encrypted data from 

multiple IoV entities, using homomorphically encrypted sensor readings, secret sharing with 5 shares 

(threshold 3 for decryption), and computation tasks like aggregation of average speed and traffic density. 

The efficiency of SMPC-CDP protocols is evaluated by computation overhead, privacy breach rate, and 

data utility preservation, with timestamps for collaborative computations and result accuracy. Sample 

datasets include high-density urban, highway, and rural traffic data; blockchain transaction datasets for 

vehicle registrations, insurance verifications, and toll payments; and sensor data including vehicle speed, 

location, fuel level, traffic camera data, and infrastructure sensor data. This experimental setup 

rigorously evaluates the IoV framework's performance, demonstrating significant improvements over 

existing methods ([4], [9], [15]) in terms of detection accuracy, transaction processing time, resource 

utilization, and privacy preservation. 

 

Table 1: Detection Accuracy and False Positive Rate for Anomaly Detection 

Method Detection Accuracy (%) False Positive Rate (%) 

Proposed 95 2 

Method [4] 89 5 
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Method [9] 92 3.5 

Method [15] 90 4 

Table 1 shows the performance of the proposed ADAM model compared to three existing methods. The 

proposed model achieves a higher detection accuracy of 95% and a lower false positive rate of 2%, 

demonstrating its superior capability in identifying anomalies in network traffic with minimal false 

alarms. 

 

Table 2: Transaction Processing timestamp and Throughput for Blockchain Sharding 

Method Transaction Processing timestamp 

(ms) 

Throughput 

(transactions/sec) 

Proposed 10 1000 

Method [4] 25 600 

Method [9] 15 800 

Method [15] 20 700 

Table 2 compares the transaction processing timestamp and throughput for the proposed EBBS model 

with existing methods. The proposed model significantly reduces the transaction processing timestamp 

to 10 ms and increases the throughput to 1000 transactions per second, highlighting its efficiency and 

scalability in handling blockchain transactions. 

 

Table 3: Resource Utilization and QoS Satisfaction for Dynamic Network Slicing 

Method Resource Utilization Efficiency (%) QoS Satisfaction Rate 

(%) 

Proposed 85 98 

Method [4] 70 85 

Method [9] 75 90 

Method [15] 80 95 

Table 3 presents the results of resource utilization efficiency and QoS satisfaction rate for the ADNS 

model. The proposed model achieves a resource utilization efficiency of 85% and a QoS satisfaction rate 

of 98%, outperforming the existing methods in optimizing resource allocation and maintaining high 

service quality. 

 

Table 4: Privacy Preservation and Computation Overhead for SMPC 

Method Privacy Breach 

Rate (%) 

Computation Overhead 

(%) 

Data Utility Preservation 

(%) 

Proposed 0 20 95 

Method [4] 1 35 90 

Method [9] 0.5 25 92 

Method [15] 0.2 30 93 

Table 4 evaluates the privacy preservation, computation overhead, and data utility preservation of the 

SMPC-CDP model.  

The proposed model ensures a privacy breach rate of 0%, a computation overhead of 20%, and data 

utility preservation of 95%, demonstrating its effectiveness in secure and privacy-preserving 

collaborative data processing. 
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Table 5: Average Response timestamp for Anomaly Detection and Mitigation 

Method Average Response timestamp (ms) 

Proposed 50 

Method [4] 120 

Method [9] 80 

Method [15] 100 

Table 5 compares the average response timestamp for anomaly detection and mitigation among the 

proposed ADAM model and existing methods. The proposed model achieves the fastest response 

timestamp of 50 ms, enabling timely detection and mitigation of security threats in the IoV network. 

 

Table 6: Latency Reduction and Cross-Shard Consistency for Blockchain Sharding 

Method Latency Reduction (%) Cross-Shard Consistency (%) 

Proposed 70 100 

Method [4] 40 95 

Method [9] 55 98 

Method [15] 60 99 

Table 6 assesses the latency reduction and cross-shard consistency of the EBBS model. The proposed 

model achieves a latency reduction of 70% and maintains 100% cross-shard consistency, highlighting its 

effectiveness in improving the performance and reliability of blockchain-based IoV networks.  These 

tables collectively illustrate the superior performance of the proposed IoV framework across multiple 

dimensions, including anomaly detection accuracy, transaction processing efficiency, resource 

utilization, privacy preservation, response time, and latency reduction. The proposed methods 

significantly enhance the security, scalability, and efficiency of IoV networks, demonstrating their 

potential to address the critical challenges posed by the deployment of 5G technology. 

 

Conclusion  

This paper presents a comprehensive framework for enhancing the security, scalability, efficiency, and 

privacy of IoV networks through the integration of advanced AI-driven techniques and blockchain 

technology. The proposed framework comprises four key components: AI-Driven Anomaly Detection 

and Mitigation (ADAM), Edge-Based Blockchain Sharding (EBBS), AI-Enabled Dynamic Network 

Slicing (ADNS), and Secure Multi-Party Computation for Collaborative Data Processing (SMPC-CDP). 

The extensive experimental evaluation demonstrates the significant improvements achieved by the 

proposed methods over existing approaches. The ADAM model achieves a detection accuracy of 95% 

and a false positive rate of 2%, significantly outperforming existing methods, which achieve detection 

accuracies ranging from 89% to 92% and false positive rates from 3.5% to 5%. This high accuracy and 

low false positive rate ensure robust real-time threat detection, enhancing the overall security of IoV 

networks. Additionally, the average response timestamp for anomaly detection and mitigation is reduced 

to 50 ms, compared to 80-120 ms for existing methods, enabling timely responses to security threats. 

The EBBS model addresses the scalability and latency issues inherent in traditional blockchain systems. 

The proposed sharding mechanism reduces transaction processing timestamp to 10 ms and increases 

throughput to 1000 transactions per second. In comparison, existing methods exhibit processing times 

ranging from 15 to 25 ms and throughput between 600 and 800 transactions per second. Furthermore, 

EBBS achieves a latency reduction of 70% and maintains 100% cross-shard consistency, demonstrating 
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its effectiveness in improving the performance and reliability of blockchain-based IoV networks. The 

ADNS model dynamically adjusts network slice configurations based on real-time traffic patterns and 

QoS requirements. The model achieves a resource utilization efficiency of 85% and a QoS satisfaction 

rate of 98%, significantly higher than the 70-80% efficiency and 85-95% satisfaction rates of existing 

methods. This ensures optimal resource allocation and high service quality across diverse IoV 

applications. 

The SMPC-CDP model ensures secure and privacy-preserving data processing. It achieves a privacy 

breach rate of 0%, computation overhead of 20%, and data utility preservation of 95%, outperforming 

existing methods with privacy breach rates of 0.2-1%, computation overheads of 25-35%, and data 

utility preservation of 90-93%. These results demonstrate the model's capability to securely process 

sensitive data collaboratively without compromising privacy or computational efficiency. The proposed 

framework significantly advances the state-of-the-art in IoV networks, providing a robust and efficient 

solution for the challenges posed by 5G deployments. The integration of ADAM, EBBS, ADNS, and 

SMPC-CDP components ensures enhanced security, scalability, efficiency, and privacy, making the 

framework well-suited for next-generation IoV systems. 
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