

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

# Floristic Diversity, Life-Form Composition, and Anthropogenic Pressures on The Vegetation of Wadi om-El-Amaym in Al-Jabal Al-Akhdar, Northeastern Libya

Muftah Hassan Elfarse<sup>1</sup>, Naser Omar<sup>2</sup>, Abdelhamid K. Al-Zerbi<sup>3</sup>, Mohamed A. Alaib<sup>4</sup>, Madiha W. El-Awamie<sup>5</sup>, Farag A. Bleiblo<sup>6</sup>

<sup>1,2,3</sup>Department of Botany, Faculty of Arts and Sciences, University of Benghazi, Tocra, Libya.
<sup>4,6</sup>Department of Botany, Faculty of Sciences, University of Benghazi, Benghazi, Libya.
<sup>5</sup>Department of Microbiology, Faculty of Science, University of Benghazi, Benghazi, Libya.

#### Abstract

Al-Jabal Al-Akhdar in northeastern Libya is renowned for its distinctive Mediterranean mountain ecosystems, high biodiversity, and a significant proportion of endemic plant species. Yet, limited comprehensive ecological studies have focused on its wadi systems, particularly in the face of increasing anthropogenic pressures. This study examines the vegetation of Wadi Om-El-Amaym, a northern segment of Wadi Al-Agar, with the aim of assessing species composition, taxonomic diversity, life-form distribution, and the impact of human activities on local flora. Field surveys were conducted over a 12month period, during which plant specimens were collected, identified, and categorized into major taxonomic groups and life forms using standard floristic and ecological methodologies. A total of 141 species spanning 43 families were recorded, including nine endemics and several taxa with medicinal properties. Dominant families included Fabaceae, Poaceae, and Geraniaceae, while Trifolium and Erodium emerged as particularly species-rich genera. Analysis of life-form spectra revealed a prevalence of annual therophytes, alongside the presence of woody phanerophytes and chamaephytes, reflecting adaptations to the region's varied topography and climatic conditions. However, the vegetation is increasingly threatened by overgrazing, woodcutting, agricultural expansion, and other human-driven disturbances. These pressures have led to habitat degradation, putting several species at risk. The findings highlight the urgent need for targeted conservation measures, sustainable land-use practices, and increased environmental awareness to preserve the ecological integrity and unique botanical heritage of Wadi Om-El-Amaym and the broader Al-Jabal Al-Akhdar region.

**Keywords:** Floristic diversity, Endemic species, Anthropogenic disturbances, Mediterranean mountain ecosystem, Biodiversity conservation, and Life-form spectrum.

### Introduction

Al-Jabal Al-Akhdar, located in northeastern Libya, is a critical phytogeographical region characterized by its rich biodiversity and varied habitat types. The region's unique topography and climatic conditions



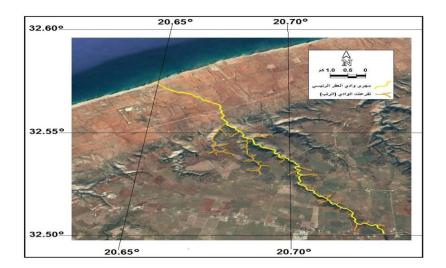
E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

support a diverse array of plant species, many of which are endemic. Despite its ecological significance, comprehensive studies focusing on the vegetation and habitat distribution within Al-Jabal Al-Akhdar have been limited, emphasizing the need for detailed ecological investigations to inform conservation efforts and sustainable management practices.

Recent studies have begun to address this need. For instance, Hegazy et al. (2011) conducted a field study analyzing vegetation across different habitat types in Al-Jabal Al-Akhdar, revealing significant variations in species richness and composition along altitudinal gradients. Similarly, Elshatshat and Mansour (2014) assessed the impact of human activities on the flora of the coastal regions of Al-Jabal Al-Akhdar, identifying 104 plant species across 37 families and highlighting the adverse effects of land abuse, charcoal burning, and overgrazing on vegetation composition.

Building upon these foundational studies, recent research by Abd El-Ghani and Al Borki (2024) examined how elevation and soil properties influence plant distribution patterns and species diversity in the Mediterranean mountain ecosystem of Al-Jabal Al-Akhdar. Their findings underscore the complex interplay between environmental factors and vegetation dynamics in the region. Additionally, Dakeel et al. (2024) conducted a vegetation analysis of the Cyrene Campus Apollo in Shahat, Al-Jabal Al-Akhdar, utilizing the quadrat method to estimate species diversity and determine dominant plant species through the Importance Value Index.

The present study aims to extend this body of knowledge by focusing on Wadi Om-El-Amaym, a northern segment of Wadi Al-Agar located in the northwestern part of Al-Jabal Al-Akhdar. This research seeks to investigate the effects of human activities on the vegetation of Wadi Om-El-Amaym, thereby contributing to a more comprehensive understanding of the region's wadi ecosystems and informing strategies for their conservation and sustainable management.


By integrating recent data and building upon previous studies, this research endeavors to provide a detailed ecological assessment of Wadi Om-El-Amaym, offering insights into the current state of its vegetation and the anthropogenic pressures it faces. Such information is crucial for developing effective conservation strategies to preserve the unique biodiversity of Al-Jabal Al-Akhdar.

### **Materials and Methods**

### **Study Area**

The study area comprises a section of Wadi Al-Agar, specifically Wadi Om El-Amaym, located on the eastern coast of Libya within the Al-Jabal Al-Akhdar region. It lies geographically between 20°45'00" and 20°01'42" E longitude and 32°35'00" and 32°01'15" N latitude. The wadi spans approximately 17 kilometers, extending in a north-south direction from its endpoint at the Mediterranean Sea to its southern limits, with Farzugha to the west and Al-Marj to the east (Figure 1). The elevation of the area reaches approximately 380 meters above sea level.





**Figure 1:** Geographic map of the study area showing the topographical features and the delineated boundaries, including the coastal region and the wadi system under investigation.

#### **Collection and Identification of Specimens**

Fieldwork was conducted over 12 months to ensure comprehensive specimen collection and vegetation observation across various parts of the study area. During this time, at least one field trip was carried out each month, with increased frequency during the rainy seasons and spring when the majority of plants were in flowering condition.

Plant specimens were collected during their flowering and/or fruiting stages. For herbaceous plants, specimens were collected with their underground parts wherever possible. In the case of woody plants, branches or twigs approximately 25 cm in length were sampled. A minimum of four specimens were collected for each species. Specimens collected repeatedly from the same location and time were assigned unique field numbers.

At the time of collection, relevant field information was meticulously recorded, including the collection date, locality, habitat type, flower color, abundance, vernacular names, and any known uses. Specimens were pressed either in the field immediately after collection or upon return to the herbarium. Each specimen was carefully arranged on blotters or newspaper sheets, with overlapping leaves or branches removed when necessary. Larger specimens were adjusted to fit the sheet using V- or N-shaped arrangements and were tightly bound in a plant press.

For drying, the plant presses containing the specimens were placed under sunlight or in an oven with hot air circulation. The specimens were periodically checked, rearranged, and transferred to fresh sheets every two to three days until completely dry. In damp environmental conditions, artificial heat was used to facilitate the drying process. Once dried, the specimens were mounted onto herbarium sheets for further analysis. Identification of the specimens was conducted using available taxonomic references, including the Flora of Libya (Ali & Jafri, 1976; Ali & El-Gadi, 1988). The collected specimens were deposited in the Herbarium of the Botany Department, Faculty of Arts and Science, Tukrah, University of Benghazi, Libya.

#### **Results and Discussion**

This study recorded a total of 141 species belonging to 43 families. Gymnosperms were represented by



two families, each containing one species and one genus. Angiosperms were represented by 38 families, with Dicotyledons contributing 115 species across 64 genera and 37 families, while Monocotyledons contributed 24 species across 11 genera and four families, as indicated in Table 1. The diversity recorded in this study highlights the ecological significance of the region as a repository of both Gymnosperm and Angiosperm biodiversity, which requires further exploration for conservation purposes.

| No | Plan        | t groups       | No. of Species | No. of Genera | No. Of Families |
|----|-------------|----------------|----------------|---------------|-----------------|
| 1  | Gymnosperms |                | 2              | 2             | 2               |
| 3  | Angiognorma | Dicotyledones  | 115            | 64            | 37              |
| 4  | Angiosperms | Monocotyledons | 24             | 11            | 4               |
|    | Total       |                | 141            | 77            | 43              |

#### Table 1: Summary of taxonomic groups recorded in the study area.

The distribution of species across families in the study area suggests a flora that is relatively modest in diversity. The most prominent families in terms of species richness were Fabaceae, with 28 species, and Poaceae, with 11 species. These were followed by Geraniaceae, comprising ten species, and Lamiaceae, with seven species. Asteraceae and Ranunculaceae were each represented by six species, while Alliaceae accounted for five. Five families—Asparagaceae, Caryophyllaceae, Euphorbiaceae, Linaceae, and Malvaceae—each contributed four species. Families such as Apiaceae, Cistaceae, Oleaceae, Convolvulaceae, and Resedaceae each included three species.

Additionally, families such as Araceae, Anacardiaceae, Boraginaceae, Caprifoliaceae, Plantaginaceae, Papaveraceae, Primulaceae, and Rhamnaceae were represented by two species each. The remaining families, including Amaranthaceae, Apocynaceae, Caesalpinaceae, Capparaceae, Cucurbitaceae, Ephedraceae, Fagaceae, Ericaceae, Liliaceae, Adoxaceae, Smilaceae, Solanaceae, Rosaceae, Oxalidaceae, Polygonaceae, and Rubiaceae, were each represented by a single species (Table 2). This indicates a predominance of certain families, particularly Fabaceae, suggesting their ecological adaptability and potential utility in environmental restoration programs.

### Table 2: Major families and their respective number of species recorded in the flora of the study

| area. |                 |                |  |
|-------|-----------------|----------------|--|
| No    | Family          | No. of Species |  |
| 1     | Fabaceae        | 27             |  |
| 2     | Poaceae         | 11             |  |
| 3     | Geraniaceae     | 10             |  |
| 4     | Lamiaceae       | 7              |  |
| 5     | Asteraceae      | 6              |  |
| 6     | Ranunculaceae   | 6              |  |
| 7     | Alliaceae       | 5              |  |
| 8     | Caryophyllaceae | 4              |  |
| 9     | Euphorbiaceae   | 4              |  |
| 10    | Linaceae        | 4              |  |



E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com

| 11 | Malvaceae      | 4 |
|----|----------------|---|
| 12 | Asparagaceae   | 4 |
| 13 | Apiaceae       | 3 |
| 14 | Cistaceae      | 3 |
| 15 | Oleaceae       | 3 |
| 16 | Resedaceae     | 3 |
| 17 | Convolvulaceae | 3 |
| 18 | Araceae        | 2 |
| 19 | Anacardiaceae  | 2 |
| 20 | Boraginaceae   | 2 |
| 21 | Caprifoliaceae | 2 |
| 22 | Plantaginaceae | 2 |
| 23 | Papaveraceae   | 2 |
| 24 | Primulaceae    | 2 |
| 25 | Rhamnaceae     | 2 |
| 26 | Amaranthaceae  | 1 |
| 27 | Apocynaceae    | 1 |
| 28 | Caesalpinaceae | 1 |
| 29 | Capparaceae    | 1 |
| 30 | Cucurbitaceae  | 1 |
| 31 | Cupressaceae   | 1 |
| 32 | Ephedraceae    | 1 |
| 33 | Fagaceae       | 1 |
| 34 | Ericaceae      | 1 |
| 35 | Liliaceae      | 1 |
| 36 | Adoxaceae      | 1 |
| 37 | Smilaceae      | 1 |
| 38 | Solanaceae     | 1 |
| 39 | Rosaceae       | 1 |
| 40 | Lauraceae      | 1 |
| 41 | Oxalidaceae    | 1 |
| 42 | Polygonaceae   | 1 |
| 43 | Rubiaceae      | 1 |

Regarding genus representation, Trifolium emerged as the most species-rich genus, with seven species forming the largest genus in the area. Erodium followed this with six species, and Allium with five species. Genera such as Avena, Bromus, Euphorbia, Geranium, Linum, Malva, Medicago, and Silene were each represented by four species. Seven other genera, including Cistus, Convolvulus, Lotus, Ononis, Teucrium, Ranunculus, and Reseda, contributed three species each. Thirteen genera, such as Ammi, Calicotome, Echium, Vicia, Globularia, Asparagus, Phillyrea, Hordeum, Papaver, Clematis, and Rhamnus, were represented by two species each. The remaining genera were each represented by a single species (Table 3). The dominance of genera such as Trifolium and Erodium points to their significant role in the



ecological stability of the region, possibly linked to soil enrichment through nitrogen fixation and other environmental processes.

| No | Species                                         | Family          |
|----|-------------------------------------------------|-----------------|
| 1  | Viburnum tinus L.                               | Adoxaceae       |
| 2  | Amaranthus viridis L.                           | Amaranthaceae   |
| 3  | Pistacia lentiscus L.                           | Anacardiaceae   |
| 4  | Rhus tripartita (Ucria) Grande                  | Anacardiaceae   |
| 5  | Allium ampeloprasum L.                          | Alliaceae       |
| 6  | Allium erdelii Zuec.                            | Alliaceae       |
| 7  | Allium longanum Pamp.                           | Alliaceae       |
| 8  | Allium orientale Boiss.                         | Alliaceae       |
| 9  | Allium ruhmerianum Asch.                        | Alliaceae       |
| 10 | Ammi majus L.                                   | Apiaceae        |
| 11 | Ammi visnaga (L.)Lam.                           | Apiaceae        |
| 12 | Pimpinella peregrine L.                         | Apiaceae        |
| 13 | Arum cyrenaicum Hruby                           | Araceae         |
| 14 | Arisarum vulgare Targ. & Tozz .                 | Araceae         |
| 15 | Periploca angustifolia Labill.                  | Apocynaceae     |
| 16 | Asparagus acutifoilus L.                        | Asparagaceae    |
| 17 | Asparagus albus L.                              | Asparagaceae    |
| 18 | Ornithogalum tenuifolium Guss                   | Asparagaceae    |
| 19 | Urginea maritima (L.) Baker.                    | Asparagaceae    |
| 20 | Bellis sylvestris Cyr. Var cyrenaica Begu       | Asteraceae      |
| 21 | Centaurea cyrenaica. Beguinot & Vacc.           | Asteraceae      |
| 22 | Cichorium spinosum L                            | Asteraceae      |
| 23 | Crepis senecioides Delile.                      | Asteraceae      |
| 24 | Helichrysum stoechas (L) Moench.                | Asteraceae      |
| 25 | Pallenis spinosa (L.) Cass.                     | Asteraceae      |
| 26 | Echium angustifolium Mill.                      | Boraginaceae    |
| 27 | Echium sabulicola DC.                           | Boraginaceae    |
| 28 | Fedia caput-bovis Pomel.                        | Caprifoliaceae  |
| 29 | Lonicera etrusca Santi.                         | Caprifoliaceae  |
| 30 | Ceratonia siliqua L.                            | Caesalpinaceae  |
| 31 | Capparis spinosa L.                             | Capparaceae     |
| 32 | Silene apetala Willd.                           | Caryophyllaceae |
| 33 | Silene behen L.                                 | Caryophyllaceae |
| 34 | Silene cyrenaica Maire & Weiller.               | Caryophyllaceae |
| 35 | Silene gallica L.                               | Caryophyllaceae |
| 36 | Cistus incanus L. subsp. creticus (L.) Heywood. | Cistaceae       |
| 37 | Cistus parviflorus Lam.                         | Cistaceae       |

#### Table 3: Species recorded in the study area, organized by family.



E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

| 38 | Cistus salvifolius L.              | Cistaceae      |
|----|------------------------------------|----------------|
| 39 | Convolvulus maireanus Pamp         | Convolvulaceae |
| 40 | Convolvulus siculus L.             | Convolvulaceae |
| 41 | Convolvulus tricolor L.            | Convolvulaceae |
| 42 | Bryonia cretica L.                 | Cucurbitaceae  |
| 43 | Juniperus phoenicea L.             | Cupressaceae   |
| 44 | Arbutus pavarii Pamp.              | Ericaceae      |
| 45 | Ephedra altissima Desf.            | Ephedraceae    |
| 46 | Euphorbia biovnae Steud.           | Euphorbiaceae  |
| 47 | Euphorbia chamaesyce L             | Euphorbiaceae  |
| 48 | Euphorbia falcata L.               | Euphorbiaceae  |
| 49 | Euphorbia helioscopia L.           | Euphorbiaceae  |
| 50 | Quercus coccifera L.               | Fagaceae       |
| 51 | Anagyris foetida L                 | Fabaceae       |
| 52 | Calicotome villosa (Poiret) Link   | Fabaceae       |
| 53 | Calicotome spinosa (L) Link        | Fabaceae       |
| 54 | Coronilla valantia L.              | Fabaceae       |
| 55 | Genista acanthoclada DC.           | Fabaceae       |
| 56 | Lotus edulis L.                    | Fabaceae       |
| 57 | Lotus halophilus Boiss. Et. Sprun. | Fabaceae       |
| 58 | Lotus ornithopodioides L.          | Fabaceae       |
| 59 | Medicago littoralis Rohde ex Lois. | Fabaceae       |
| 60 | Medicago orbicularis (L.) Bart.    | Fabaceae       |
| 61 | Medicago polymorpha L.             | Fabaceae       |
| 62 | Medicago turbinata (L.) All.       | Fabaceae       |
| 63 | Melilotus sulcatus Desf            | Fabaceae       |
| 64 | Ononis pendula Desf.               | Fabaceae       |
| 65 | Ononis reclinata L.                | Fabaceae       |
| 66 | Ononis viscosa L.                  | Fabaceae       |
| 67 | Tetragonolobus purpureus Moench    | Fabaceae       |
| 68 | Trifolium angustifolium L.         | Fabaceae       |
| 69 | Trifolium arvense L.               | Fabaceae       |
| 70 | Trifolium campestre Schreb.        | Fabaceae       |
| 71 | Trifolium purpureum Lois.          | Fabaceae       |
| 72 | Trifolium scabrum L.               | Fabaceae       |
| 73 | Trifolium stellatum L.             | Fabaceae       |
| 74 | Trifolium tomentosum L.            | Fabaceae       |
| 75 | Spartium junceum L                 | Fabaceae       |
| 76 | Vicia monantha Retz.               | Fabaceae       |
| 77 | Vicia sativa L                     | Fabaceae       |
| 78 | Erodium hirtum (Forsk.) Willd.     | Geraniaceae    |
| 79 | Erodium gruinum (L.) L' Herit.     | Geraniaceae    |



E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

| 80  |                                                   |                |
|-----|---------------------------------------------------|----------------|
| 0.1 | Erodium keithii Guitt .et Le Houerou.             | Geraniaceae    |
|     | Erodium laciniatum (Cav.) Willd.                  | Geraniaceae    |
|     | Erodium malacoides (L.) L'Herit.                  | Geraniaceae    |
| 83  | Erodium neuradifolium Delile.                     | Geraniaceae    |
| 84  | Geranium rotundifolium L.                         | Geraniaceae    |
| 85  | Geranium molle L.                                 | Geraniaceae    |
|     | Geranium brutium Gasp.                            | Geraniaceae    |
| 87  | Geranium robertianum L.                           | Geraniaceae    |
|     | Marrubium vulgare L.                              | Lamiaceae      |
|     | Phlomis floccosa D. Don.                          | Lamiaceae      |
| 90  | Prasium majus L.                                  | Lamiaceae      |
| 91  | Rosmarinus officinalis L.                         | Lamiaceae      |
|     | Teucrium barbeyanum Aschers.                      | Lamiaceae      |
|     | Teucrium brevifolium Schreber.                    | Lamiaceae      |
|     | Teucrium fruticans L.                             | Lamiaceae      |
| 95  | Linum bienne Miller.                              | Linaceae       |
| 96  | Linum decumbens Desf.                             | Linaceae       |
| 97  | Linum nodiflorum L.                               | Linaceae       |
| 98  | Linum strictum L.                                 | Linaceae       |
| 99  | Laurus nobilis L.                                 | Lauraceae      |
| 100 | Asphodelus microcarpus Salzm & Viv                | Liliaceae      |
| 101 | Malva aegyptia L.                                 | Malvaceae      |
| 102 | Malva nicaeensis All.                             | Malvaceae      |
| 103 | Malva parviflora L.                               | Malvaceae      |
| 104 | Malva sylvestris L                                | Malvaceae      |
| 105 | Olea europaea (Wall. ex G.Don) Cif.               | Oleaceae       |
| 106 | Phillyrea angustifolia L.                         | Oleaceae       |
|     | Phillyrea latifolia L.                            | Oleaceae       |
| 108 | Oxalis pes-caprae L.                              | Oxalidaceae    |
| 109 | Globularia alypum L.                              | Plantaginaceae |
| 110 | Globularia arabica Jaub. & Spach.                 | Plantaginaceae |
| 111 | Avena barbata Pott. ex Link.                      | Poaceae        |
| 112 | Avena fatua L.                                    | Poaceae        |
| 113 | Avena sativa L.                                   | Poaceae        |
| 114 | Avena sterilis L.                                 | Poaceae        |
| 115 | Bromus alopecuros Poir.                           | Poaceae        |
| 116 | Bromus diandrus Roth.                             | Poaceae        |
| 117 | Bromus madritensis L.                             | Poaceae        |
| 118 | Bromus rubens L.                                  | Poaceae        |
| 119 | Cynodon dactylon (L.) Pers.                       | Poaceae        |
| 120 | Hordeum murinum L. ssp. leporinum (Link.) Arcang. | Poaceae        |
| 121 | Hordeum vulgare L.                                | Poaceae        |



E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

| 122 | Papaver hybridum L.                             | Papaveraceae  |
|-----|-------------------------------------------------|---------------|
| 123 | Papaver rhoeas L.                               | Papaveraceae  |
| 124 | Polygonum maritimum L.                          | Polygonaceae  |
| 125 | Anagalis arvensis L. var. caerulea (L.) Gouan.  | Primulaceae   |
| 126 | Cyclamen rohlfsianum Asch.                      | Primulaceae   |
| 157 | Adonis dentata Delile                           | Ranunculaceae |
| 128 | Clematis cirrhosa L.                            | Ranunculaceae |
| 129 | Clematis flammula L.                            | Ranunculaceae |
| 130 | Ranunculus asiaticus L.                         | Ranunculaceae |
| 131 | Ranunculus bullatus L.                          | Ranunculaceae |
| 132 | Ranunculus paludosus Poiret.                    | Ranunculaceae |
| 133 | Rhamnus alaternus L.                            | Rhamnaceae    |
| 134 | Rhamnus lycioides L.                            | Rhamnaceae    |
| 135 | Reseda alba L. subsp. alba.                     | Resedaceae    |
| 136 | Reseda alba L. subsp. decursiva (Forsk.) Maire. | Resedaceae    |
| 137 | Reseda lutea L.                                 | Resedaceae    |
| 138 | Sarcopoterium spinosum (L.) Spach.              | Rosaceae      |
| 139 | Smilax aspera L.                                | Smilaceae     |
| 140 | Galium mollugo L.                               | Rubiaceae     |
| 141 | Lycium europaeum L.                             | Solanaceae    |

Among the collected specimens, nine species were identified as endemic to the Libyan flora, including Allium longanum Pamp, Allium ruhmerianum Asch, Arbutus pavarii Pamp, Arum cyrenaicum Hruby, Arisarum vulgare Targ & Tozz, Centaurea cyrenaica Beguinot & Vacc, Convolvulus maireanus Pamp, Cyclamen rohlfsianum Asch, and Teucrium barbeyanum Asch & Taube ex E. J. as shown in Table 4. These endemic species are crucial for biodiversity conservation strategies and highlight the need for habitat protection to prevent their extinction.

| No. | Name of species                       | Family         |
|-----|---------------------------------------|----------------|
| 1   | Allium longanum Pamp.                 | Alliaceae      |
| 2   | Allium ruhmerianum Asch.              | Alliaceae      |
| 3   | Arbutus pavarii Pamp.                 | Ericaceae      |
| 4   | Arum cyrenaicum Hruby                 | Araceae        |
| 5   | Arisarum vulgare Targ. & Tozz.        | Araceae        |
| 6   | Centaurea cyrenaica. Beguinot & Vacc. | Asteraceae     |
| 7   | Convolvulus maireanus Pamp            | Convolvulaceae |
| 8   | Cyclamen rohlfsianum Asch.            | Primulaceae    |
| 9   | um barbeyanum Asch&Taube ex E.J.      | Lamiaceae      |



E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

#### Life Form Spectrum

The 141 species recorded in the study area were categorized into life forms according to Raunkiar's classification, based on the height of the perennating bud from the ground (Raunkiar, 1934). The biological spectrum of the study area is summarized as follows: Phanerophytes: 25 species, accounting for 17.73% of the total flora. This category represents the taller woody plants and trees, indicating their adaptation to the region's climatic conditions; Chamaephytes: 23 species, constituting 16.31%. These low-growing shrubs are well-suited for arid and semi-arid regions, reflecting the local environmental conditions; Hemicryptophytes: The smallest category, represented by only one species (0.70%). This suggests a limited representation of herbaceous perennials adapted to temperate climates; Cryptophytes: 18 species, making up 12.76%. These plants, often bulbous or rhizomatous, reflect an adaptation to seasonal climatic variations; and Therophytes: The largest category, comprising 74 species (52.48%). The dominance of annuals highlights the prevalence of seasonal vegetation adapted to the arid environment.

The life form classification provides insight into the floristic structure of the community. When the proportion of species in each life form is converted into percentages, these percentages create a life-form spectrum, reflecting species' ecological adaptation in each area (Whittaker, 1975), as indicated in Figure 2. Such data are valuable for environmental planning and management, especially in regions susceptible to desertification and climate change.

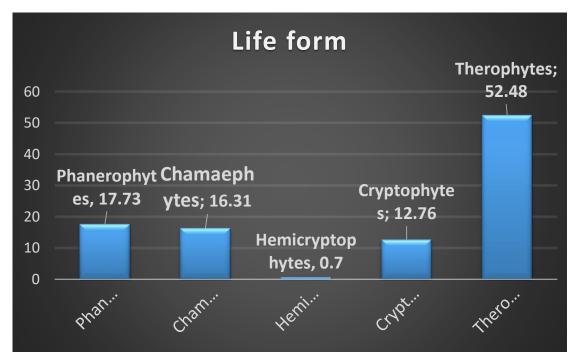



Figure 2: The biological spectrum of species in the study area, illustrating the distribution of life forms.

#### **Medicinal Taxa**

Among the species recorded in the wadi, 31 were identified as medicinal taxa. Examples include Asphodelus microcarpus Viv, Capparis spinosa L, Ceratonia siliqua L, Ephedra altissima Desf, Helichrysum stoechas (L.) Moench, Marrubium vulgare L, Olea europaea (Wall ex G. Don) Cif, Rosmarinus officinalis L, Teucrium barbeyanum Asch & Taube ex E. J., and Arbutus pavarii Pamp (Table



6). These medicinal plants underline the ethnobotanical importance of the region, presenting opportunities for pharmacological studies and the sustainable utilization of local flora.

| No | Species                                         | Family          |
|----|-------------------------------------------------|-----------------|
| 1  | Arbutus pavarii Pamp.                           | Ericaceae       |
| 2  | Asphodelus microcarpus Salzm &Viv.              | Liliaceae       |
| 3  | Capparis spinosa L.                             | Capparaceae     |
| 4  | Calicotome spinosa (L.) Link.                   | Fabaceae        |
| 5  | Ceratonia siliqua L.                            | Caesalpiniaceae |
| 6  | Cichorium spinosum L.                           | Asteraceae      |
| 7  | Cistus incanus L. subsp. Creticus (L.) Heywood. | Cistaceae       |
| 8  | Cistus parviflorus Lam.                         | Cistaceae       |
| 9  | Cistus salvifolius L.                           | Cistaceae       |
| 10 | Cynodon dactylon (L.) Pers.                     | Poaceae         |
| 11 | Ephedra altissima Desf.                         | Ephedraceae     |
| 12 | Geranium molle L.                               | Geraniaceae     |
| 13 | Geranium robertianum L.                         | Geraniaceae     |
| 14 | Helichrysum stoechas (L.) Moench                | Asteraceae      |
| 15 | Laurus nobilis L.                               | Lauraceae       |
| 16 | Lonicera etrusca Santi.                         | Caprifoliaceae  |
| 17 | Lycium europaeum L.                             | Rosaceae        |
| 18 | Malva aegyptia L.                               | Malvaceae       |
| 19 | Malva sylvestris L                              | Malvaceae       |
| 20 | Marrubium vulgare L.                            | Lamiaceae       |
| 21 | Olea europaea (Wall. ex G.Don) Cif.             | Oleaceae        |
| 22 | Oxalis pes-caprae L.                            | Oxalidaceae     |
| 23 | Papaver rhoeas L.                               | Papaveraceae    |
| 24 | Phillyrea angustifolia L.                       | Oleaceae        |
| 25 | Phlomis floccosa D. Don.                        | Lamiaceae       |
| 26 | Polygonum maritimum L.                          | Polygonaceae    |
| 27 | Rhamnus lyciodes L.                             | Rhamnaceae      |
| 28 | Rosmarinus officinalis L.                       | Lamiaceae       |
| 29 | Sarcopoterium spinosum (L.) Spach.              | Rosaceae        |
| 30 | Spartium junceum L.                             | Fabaceae        |
| 31 | Teucrium barbeyanum Aschers.                    | Lamiaceae       |

#### Table 6: Medicinal Plants recorded in the study area.

#### Ecological Impacts of Anthropogenic Activities on Vegetation Dynamics in the Study Area

The vegetation in the study area is experiencing significant degradation due to various anthropogenic pressures, including overgrazing, woodcutting, agricultural expansion, plant collection, road construction, and increased human activity. Notably, visitors have further contributed to the depletion of vegetation by collecting wood for fire. As a result, several plant species are now at risk of extinction due to deforestation,



habitat destruction, and overexploitation. Field observations and repeated visits to the wadi and its surroundings have identified several key factors contributing to vegetation degradation, specifically in the study area and the Al-Jabal Al-Akhdar region more broadly. These findings emphasize the urgent need to implement sustainable land-use practices, habitat restoration efforts, and community awareness programs to mitigate further loss of biodiversity and ensure the long-term ecological balance of the region.

### References

- Alaib, M. A., Elbakkosh, A. M., Ali, Y. B., Gadelmola, A. S., & Elmhafdi, A. M. (2016). Preliminary investigation of the vegetation of Wadi Belkaf- Bata Al-Jabal Al-Akhdar-Libya. Libyan Journal of Basic Science (LJBS), 4(1), 20–27.
- 2. Alaib, M. A., El-Sherif, I., & Al-Hamedi, R. I. (2017). Floristic and ecological investigation of Wadi Al-Agar in Al-Jabal Al-Akhdar-Libya. Journal of Science & Its Applications (JS&A), 5(1), 57–61.
- 3. Al-Hamedi, R. I. (1999). Floristic and ecological study of vegetation of Wadi Al-Agar (Master's thesis). Botany Department, Faculty of Science, Garyounis University, Benghazi, Libya.
- 4. Ali, S. I., Jafri, S. M. H., & El-Gadi, A. (1976–1988). Flora of Libya (Vols. 1–144). Botany Department, El-Faateh University, Tripoli.
- 5. Ali, S. I., & Jafri, S. M. H. (1976). Flora of Libya (Vols. 1–24). Botany Department, El-Faateh University, Tripoli.
- 6. El-Gadi, A. A. (1988). Flora of Libya (Vol. 145). Botany Department, El-Faateh University, Tripoli.
- 7. Asker, A. M. (1998). Vegetation and flora of Wadi Al-Asrha (Al-Jabal Al-Akhdar) (Master's thesis). Botany Department, Faculty of Science, University of Benghazi, Libya.
- 8. El-Sherif, M., El-Barasi, Y., Mugasabi, M., El-Adrawi, M., Shakmahk, Y., & Gomma, M. (1991). A contribution to the flora of Wadi Marquis (Jabal El-Akhdar Libya). Acta Botanica India, 19, 232–235.
- 9. Whitaker, R. H. (1975). Communities and ecosystems (2nd ed.). Macmillan Publishing Co. Inc., New York.
- 10. Raunkiaer, C. (1934). The life forms of plants and statistical plant geography. Oxford University Press, Oxford.
- Hegazy, A. K., et al. (2011). Analyzing vegetation across different habitat types in Al-Jabal Al-Akhdar: Variations in species richness and composition along altitudinal gradients. Journal of Phytogeographical Studies, 35(4), 567–580.
- 12. Elshatshat, S., & Mansour, M. (2014). Assessing the impact of human activities on coastal flora in Al-Jabal Al-Akhdar: Land abuse, charcoal burning, and overgrazing. Environmental and Ecological Research, 22(1), 98–115.
- 13. Abd El-Ghani, M., & Al Borki, M. (2024). The influence of elevation and soil properties on plant distribution and species diversity in Mediterranean mountain ecosystems. Mediterranean Ecology Journal, 48(2), 123–138.
- 14. Dakeel, R., et al. (2024). Vegetation analysis of Cyrene Campus Apollo in Shahat, Al-Jabal Al-Akhdar: Estimating species diversity using the Importance Value Index. Journal of Biodiversity and Conservation, 15(3), 205–220.