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Abstract 

Let G be a connected simple graph. A subset S of V(G) is a dominating set of G if for every v ∈ V(G) ∖ S, 

there exists x ∈ S such that xv ∈ E(G). A set  D ⊆  V(G) is said to be an outer-connected dominating set 

in G if D is dominating and either D = V(G) or ⟨V(G) ∖ D⟩ is connected. Let D be a minimum dominating 

set of G. A nonempty subset S ⊆ V(G) ∖ D is an outer connected inverse dominating set of G, if S is an 

inverse dominating set with respect to D and the subgraph ⟨V(G) ∖ S⟩ induced by V(G) ∖ S  is connected. 

The outer connected inverse domination number of G, is denoted by γ̃c
(−1)(G), that is, the minimum 

cardinality of an outer connected inverse dominating set of G. In this paper, we initiate the study of the 

concept and give the outer-connected inverse domination number of some special graphs. Further, we give 

the characterization of the outer-connected inverse dominating set in the join of two nontrivial connected 

graphs. 

 

Keywords: dominating set, outer-connected dominating set, inverse dominating set, outer-connected 

inverse dominating set 

 

1. Introduction 

Domination in graph was introduced by Claude Berge in 1958 and Oystein Ore in 1962 [1]. Following an 

article [2] by Ernie Cockayne and Stephen Hedetniemi in 1977, the domination in graphs became an area 

of study by many researchers. A subset S of V(G) is a dominating set of G if for every v ∈ V(G) ∖ S, there 

exists x ∈  S such that xv ∈ E(G), i.e., N[S] = V(G). The domination number γ(G) of G is the smallest 

cardinality of a dominating set of G. Some studies on domination in graphs were found in the papers [3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. 

A set S of vertices of a graph G is an outer-connected dominating set if every vertex not in S is adjacent to 

some vertex in S and the sub-graph induced by V(G) ∖ S is connected. The outer-connected domination 

number γ̃c(G) is the minimum cardinality of the outer-connected dominating set S of a graph G. The 

concept of outer-connected domination in graphs was introduced by Cyman [14]. Some related studies of 

outer-connected domination in graphs are found in [15, 16, 17, 18, 19, 20, 21]. 

Let D be a minimum dominating set in G. The dominating set S ⊆ V(G) ∖ D is called an inverse dominating 

set with respect to D. The minimum cardinality of an inverse dominating set is called an inverse 
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domination number of G and is denoted by γ−1(G). An inverse dominating set of cardinalities γ−1(G) is 

called γ−1 - set of G. The inverse domination in a graph was first found in the paper of Kulli [22] and can 

be read in the papers [23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. 

Motivated by the introduction of the outer-connected dominating sets and the inverse dominating sets, a 

new variant of domination in graphs is introduced in this paper. Let D be a minimum dominating set of G. 

A nonempty subset S ⊆ V(G) ∖ D is an outer connected inverse dominating set of G, if S is an inverse 

dominating set with respect to D and the subgraph ⟨V(G) ∖ S⟩ induced by V(G) ∖ S is connected. The outer 

connected inverse domination number of G, is denoted by   γ̃c
(−1)(G), that is the minimum cardinality of 

an outer connected inverse dominating set of G. In this paper, we initiate the study of the concept and give 

the outer-connected inverse domination number of some special graphs. Further, we show the 

characterization of the outer-connected inverse dominating set in the join of two nontrivial connected 

graphs. 

For the general terminology in graph theory, readers may refer to [33]. A graph G is a pair (V(G), E(G)), 

where V(G) is a finite nonempty set called the vertex-set of G and E(G) is a set of unordered pairs {u, v} 

(or simply uv) of distinct elements from V(G) called the edge-set of G. The elements of V(G) are called 

vertices and the cardinality |V(G)| of V(G) is the order of G. The elements of E(G) are called edges and 

the cardinality |E(G)| of E(G) is the size of G. If |V(G)| = 1, then G is called a trivial graph. If E(G) = ∅  , 

then G is called an empty graph. The open neighborhood of a vertex v ∈ V(G) is the set NG(v) =

{u ∈ V(G) ∶ uv ∈ E(G)}. The elements of NG(v) are called neighbors of v. The closed neighborhood of 

v ∈ V(G) is the set NG[v] = NG(v) ∪ {v}. If X ⊆ V(G), the open neighborhood of  X in G is the set NG(X) =

⋃ NG(v)v∈X . The closed neighborhood of X in G is the set NG[X] =  ⋃ NG[v]v∈X = NG(X) ∪ X. When no 

confusion arises, NG[x] [res. NG(x)] will be denoted by N[x] [resp. N(x)]. 

 

2. Results 

Definition 2.1 A simple graph G is an undirected graph with no loop edges or multiple edges. 

Definition 2.2 The path Pn = { a1a2a3 … an} is the graph with V(Pn) = {a1, a2, a3, … , an}and E(Pn) =

{ a1a2, a2a3, … , an−1an}. 

Definition 2.3 The cycle Cn = { a1a2a3 … ana1} is the graph with V(Cn) = {a1, a2, a3, … , an} and 

E(Cn) = { a1a2, a2a3, … , ana1}. 

Definition 2.4 A graph Kn = (V(Kn), E(Kn)) is called a complete graph of order n when xy is an edge in 

Kn for every distinct pair x, y ∈ V(Kn). 

Definition 2.5 A complete bipartite graph is a graph whose vertex set can be partitioned into V1 and V2 

such that every edge joins a vertex in V1 with a vertex in V2, and every vertex in V1 is adjacent with every 

vertex in V2. 

Remark 2.6 Let G be a special graph. 

(i) if G = Cn , then γ̃c
(−1)(G) = 2 , n = 4 

 

(ii) if G = Pn , then γ̃c
(−1)(G) = {

n − 1,  if n = 2 or n = 3
2, if n = 4

none, if n ≥ 5
 

 

(iii) if G = Kn , then γ̃c
(−1)(G)  =  1 , ∀n ≥  2 
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(iv)  if G = Sn , then γ̃c
(−1)(G)  =  n , ∀n ≥ 1 

 

(v) if G = Km,n , then γ̃c
(−1)(G)  =  2 , ∀m, n ≥ 2 

 

Definition 2.7 The join G +  H of two graphs G and  H is the graph with vertex-set V(G + H) = V(G) ∪

V(H) and edge-set E(G + H) = E(G) ∪ E(H) ∪ {uv: u ∈ V(G), v ∈ V(H)}. 

 

The following results are needed for our theorem. 

Lemma 2.8 Let G and H be connected non-complete graphs. If S = V(G) ∖ DG , where DG ⊂ V(G) is a 

minimum dominating set of G + H , then S is an outer-connected inverse dominating set of G + H. 

Proof: Suppose that S = V(G) ∖ DG. Then S is an inverse dominating set of G + H with respect to a 

minimum dominating set DG of G + H. Let v ∈ V(G + H) ∖ S. If v ∈ V(G) ∖ S = DG, then vy ∈ E(G + H) 

for all y ∈ V(H). If v ∈ V(H), then vx ∈ E(G + H) for all x ∈ DG. This implies that the subgraph induced 

by V(G + H) ∖ S is connected. Hence, S is an outer-connected dominating set of G + H, that is, S is an 

outer-connected inverse dominating set of G + H. ∎ 

Lemma 2.9 Let G and H be connected non-complete graphs. If S = V(H) ∖ DH, where DH ⊂ V(H) is a 

minimum dominating set of G + H, then S is an outer-connected inverse dominating set of G + H. 

Proof: Suppose that S = V(H) ∖ DH. Then S is an inverse dominating set of G + H with respect to a 

minimum dominating set DH of G + H. Let v ∈ V(G + H) ∖ S. If v ∈ V(H) ∖ S = DH, then vx ∈ E(G + H) 

for all x ∈ V(G). If v ∈ V(G), then vy ∈ E(G + H) for all y ∈ DH. This implies that the subgraph induced 

by V(G + H) ∖ S is connected. Hence, S is an outer-connected dominating set of G + H, that is, S is an 

outer-connected inverse dominating set of G + H. ∎ 

Lemma 2.10 Let G and H be connected non-complete graphs. If S = (V(G) ∖ DG) ∪  (V(H) ∖ {y}), y ∈

V(H), where DG ⊂ V(G) is a minimum dominating set of G + H , then S is an outer-connected inverse 

dominating set of G + H. 

Proof: Suppose that S = (V(G) ∖ DG) ∪ (V(H) ∖ {y}) , y ∈ V(H). Then S is an inverse dominating set of 

G + H with respect to a minimum dominating set DG ⊂ V(G) of G + H. Let v ∈ V(G + H) ∖ S. If v ∈

V(G) ∖ S = DG, then vy ∈ E(G + H). If v ∈ V(H) ∖ S, then v = y and  xy ∈ E(G + H) for all x ∈ DG. This 

implies that the subgraph induced by V(G + H) ∖ S is connected. Hence, S is an outer-connected 

dominating set of G + H, that is, S is an outer-connected inverse dominating set of G + H. ∎ 

Lemma 2.11 Let G and H be connected non-complete graphs. If S = (V(H) ∖ DH) ∪  (V(G) ∖ x), x ∈

V(G), where DH ⊂ V(H) is a minimum dominating set of G + H , then S is an outer-connected inverse 

dominating set of G + H. 

Proof: Suppose that S = (V(H) ∖ DH) ∪ (V(G) ∖ {x}) , x ∈ V(G). Then S is an inverse dominating set of 

G + H with respect to a minimum dominating set DH ⊂ V(H) of G + H. Let v ∈ V(G + H) ∖ S. If v ∈

V(H) ∖ S = DH, then vx ∈ E(G + H). If v ∈ V(G) ∖ S, then v = x and  xy ∈ E(G + H) for all y ∈ DH. This 

implies that the subgraph induced by V(G + H) ∖ S is connected. Hence, S is an outer-connected 

dominating set of G + H, that is, S is an outer-connected inverse dominating set of G + H. ∎ 
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Lemma 2.12 Let G and H be connected non-complete graphs. If S = (V(G) ∖ DG) ∪ A , A ⊂

(V(H) ∖ {y}), y ∈ V(H), A ≠  ∅, and DG ⊂ V(G) is a minimum dominating set of G + H, then S is an outer-

connected inverse dominating set of G + H. 

Proof: Suppose that S = (V(G) ∖ DG) ∪ A , A ⊂ (V(H) ∖ {y}), y ∈ V(H), A ≠  ∅. Then S is an inverse 

dominating set of G + H with respect to a minimum dominating set DG ⊂ V(G) of G + H. Let v ∈

V(G + H) ∖ S. If v ∈ V(G) ∖ S = DG, then vu ∈ E(G + H) for all u ∈ V(H) ∖ A.  If v ∈ V(H) ∖ A, then 

xv ∈ E(G + H) for all x ∈ DG. This implies that the subgraph induced by V(G + H) ∖ S is connected. 

Hence, S is an outer-connected dominating set of G + H, that is, S is an outer-connected inverse dominating 

set of G + H. ∎ 

Lemma 2.13 Let G and H be connected non-complete graphs. If S = (V(H) ∖ DH) ∪ B , B ⊂

(V(G) ∖ {x}), x ∈ V(G), B ≠  ∅, and DH ⊂ V(H) is a minimum dominating set of G + H, then S is an 

outer-connected inverse dominating set of G + H. 

Proof: Suppose that S = (V(H) ∖ DH) ∪ B , B ⊂ (V(G) ∖ {x}), x ∈ V(G), B ≠  ∅. Then S is an inverse 

dominating set of G + H with respect to a minimum dominating set DH ⊂ V(H) of G + H. Let v ∈

V(G + H) ∖ S. If v ∈ V(H) ∖ S = DH, then vu ∈ E(G + H) for all u ∈ V(G) ∖ B.  If v ∈ V(G) ∖ B, then 

yv ∈ E(G + H) for all y ∈ DH. This implies that the subgraph induced by V(G + H) ∖ S is connected. 

Hence, S is an outer-connected dominating set of G + H, that is, S is an outer-connected inverse dominating 

set of G + H. ∎ 

Theorem 2.14 Let G and H be connected non-complete graphs. The subset S ⊂ V(G + H) is an outer-

connected inverse dominating set of G + H, if one of the following conditions is satisfied. 

1. S ⊆ (V(G) ∖ DG) ∪ (V(H) ∖ {y}), where DG ⊂ V(G) is a minimum dominating set of G + H and y ∈

V(H). 

2. S ⊆ (V(H) ∖ DH) ∪ (V(G) ∖ {x}), where DH ⊂ V(H) is a minimum dominating set of G + H and x ∈

V(G). 

3. S ⊆ (V(G + H) ∖ {x, y}), x ∈ V(G), y ∈ V(H) and {x, y} is a minimum dominating set of G + H. 

Proof: Suppose that statement (i) is satisfied. Then S ⊆ (V(G) ∖ DG) ∪ (V(H) ∖ {y}), where DG ⊂ V(G) is 

a minimum dominating set of G + H and y ∈ V(H). Consider the following cases. 

Case 1. If S = V(G) ∖ DG, then by Lemma 2.8, S is an outer-connected inverse dominating set of G + H. 

Case 2. If S = (V(G) ∖ DG) ∪ (V(H) ∖ {y}), y ∈ V(H), then by Lemma 2.10, S is an outer-connected 

inverse dominating set of G + H. 

Case 3. If S = (V(G) ∖ DG) ∪ A, A ⊂ (V(H) ∖ {y}, A ≠ ∅ , and y ∈ V(H), then by Lemma 2.12, S is an 

outer-connected inverse dominating set of G + H. 

Suppose that statement (ii) is satisfied. Then S ⊆ (V(H) ∖ DH) ∪ (V(G) ∖ {x}), where DH ⊂ V(H) is a 

minimum dominating set of G + H and x ∈ V(G). Consider the following cases. 

Case 1. If S = V(H) ∖ DH, then by Lemma 2.9, S is an outer-connected inverse dominating set of G + H. 

Case 2. If S = (V(H) ∖ SH) ∪ (V(G) ∖ {x}), x ∈ V(G), then by Lemma 2.11,  S is an outer-connected 

inverse dominating set of G + H. 

Case 3. If S = (V(H) ∖ SH) ∪ B, where B ∈ (V(G) ∖ {x}) and x ∈ V(G), then by Lemma 2.13, S is an outer-

connected inverse dominating set of G + H. 

Suppose that statement (iii) is satisfied. Then S ⊆ (V(G + H) ∖ {x, y}), x ∈ V(G), y ∈ V(H) and {x, y} is a 

minimum dominating set of G + H. Consider the following cases. 
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Case 1. If S = (V(G + H) ∖ {x, y}), then S is an inverse dominating set of G + H with respect to a minimum 

dominating set {x, y}. Let v ∈ V(G + H) ∖ S. If v ∈ V(G) ∖ S, then v = x and xy ∈ E(G + H). If v ∈

V(H) ∖ S, then v = y and xy ∈ E(G + H). This implies that the subgraph induced by V(G + H) ∖ S is 

connected. Hence, S is an outer-connected dominating set of G + H, that is,  S is an outer-connected inverse 

dominating set of G + H. 

Case 2. If S ≠ (V(G + H) ∖ {x, y}), then consider the following subcases. 

Subcase 1. If S = (V(G) ∖ {x}), then S is an inverse dominating set of G + H with respect to a minimum 

dominating set {x, y}. Let v ∈ V(G + H) ∖ S. If v ∈ V(G) ∖ S, then v = x and xu ∈ E(G + H) for all u ∈

V(H). If v ∈ V(H), then xv ∈ E(G + H). This implies that the subgraph induced by V(G + H) ∖ S is 

connected. Hence, S is an outer-connected dominating set of G + H, that is S is an outer-connected inverse 

dominating set of G + H.  

Subcase 2. If S = (V(H) ∖ {y}), then S is an inverse dominating set of G + H with respect to a minimum 

dominating set {x, y}. Let v ∈ V(G + H) ∖ S. If v ∈ V(G), then vy ∈ E(G + H). If v ∈ V(H) ∖ S, then v =

y and uv ∈ E(G + H) for all u ∈ V(G). This implies that the subgraph induced by V(G + H) ∖ S is 

connected. Hence, S is an outer-connected dominating set of G + H, that is, S is an outer-connected inverse 

dominating set of G + H. 

Subcase 3. If S = SG ∪ SH, SG ⊂ (V(G) ∖ {x}), SH ⊂ (V(H) ∖ {y})(SG ≠ ∅ and SH ≠ ∅), then S is an 

inverse dominating set of G + H with respect to a minimum dominating set {x, y}. Let v ∈ V(G + H) ∖ S. 

If  v ∈ V(G) ∖ SG, then vu ∈ E(G + H) for all u ∈ V(H) ∖ SH. If  v ∈ V(H) ∖ SH, vu ∈ E(G + H) for all 

u ∈ V(G) ∖ SG. This implies that the subgraph induced by V(G + H) ∖ S is connected. Hence, S is an outer-

connected dominating set of G + H, that is, S is an outer-connected inverse dominating set of G + H. 

Subcase 4. If S = SG, SG ⊂ (V(G) ∖ {x}), (SG ≠ ∅) and SG is a dominating set of G, then S is a dominating 

set of G + H and S is an inverse dominating set with respect to a minimum dominating set {x, y}. Let v ∈

V(G + H) ∖ S. If  v ∈ V(G) ∖ SG, then vu ∈ E(G + H) for all u ∈ V(H). If v ∈ V(H), vu ∈ E(G + H) for 

all u ∈ V(G) ∖ SG. This implies that the subgraph induced by V(G + H) ∖ S is connected. Hence, S is an 

outer-connected dominating set of G + H, that is, S is an outer-connected inverse dominating set of G + H. 

Subcase 5. If S = SH, SH ⊂ (V(H) ∖ {y}), (SH ≠ ∅) and SH is a dominating set of H, then S is a dominating 

set of G + H and S is an inverse dominating set with respect to a minimum dominating set {x, y}. Let v ∈

V(G + H) ∖ S. If v ∈ V(H) ∖ SH, then vu ∈ E(G + H) for all u ∈ V(G). If v ∈ V(G), vu ∈ E(G + H) for all 

u ∈ V(H) ∖ SH. This implies that the subgraph induced by V(G + H) ∖ S is connected. Hence, S is an outer-

connected dominating set of G + H, that is, S is an outer-connected inverse dominating set of G + H. ∎ 

The following result is an immediate consequence of Theorem 2.14. 

Corollary 2.15 Let G and H be connected non-complete graphs. Then 

 γ̃c
(−1)(G + H) = {

1,     if A = {x} is a dominating set of G (or H)

        and B = {y}is a domianting set of G (or H)
2,      if otherwise.

 

 

Proof: Suppose that S = V(G) ∖ DG, where DG ⊂ V(G) is a minimum dominating set of G + H. Then by 

Lemma 2.8, S is an outer-connected inverse dominating set of G + H. This implies that, γ̃c
(−1)(G + H)  ≤

 |S|. 

 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR240633788 Volume 6, Issue 6, November-December 2024 6 

 

Consider that DG = A = {x} and B = {y} ⊂ V(G). Then B is also a dominating set of G, that is, B is an 

inverse dominating set of A of G + H. Let w ∈ V(G + H) ∖ B. If w ∈ V(G) ∖ B, then wu ∈ E(G + H) for 

all u ∈ V(H). If w ∈ V(H), then wv ∈ E(G + H), for all v ∈ V(G) ∖ B. Thus, B is an outer-connected 

dominating set of  G + H, that is, B is an outer-connected inverse dominating set of G + H. Similarly, if B 

is a dominating set of H, then B is an outer-connected inverse dominating set of G + H. Let S =  B. Then 

 1 ≤ γ̃c
(−1)(G + H)  ≤ |S|  =  |B|  =  1. Hence,  γ̃c

(−1)(G + H)  =  1. 

Suppose that S = V(H) ∖ DH, where DH ⊂ V(H) is a minimum dominating set of G + H. Then by Lemma 

2.9, S is an outer-connected inverse dominating set of G + H. Consider that DH = A = {x} and B = {y} ⊂

V(H)(orV(G)). By following similar arguments above, γ̃c
(−1)(G + H)  =  1. 

Suppose that S ⊆ (V(G + H) ∖ {x, y}), x ∈ V(G), y ∈ V(H), and {x, y} is a minimum dominating set of G +

H. By Theorem 2.14 (iii), S is an outer-connected inverse dominating set of G + H with respect to a 

minimum dominating set {x, y} of G + H. Let S = {v, u} such that x ≠ v ∈ V(G) and y ≠ u ∈ V(H). Since 

{x, y} is a minimum dominating set of G + H, it follows that 2 = |{x, y}| = γ(G + H) ≤ γ̃c
(−1)(G + H) ≤

|S| = |{v, u}| = 2 , that is, γ̃c
(−1)(G + H)  =  2. ∎ 

  

Conclusion and Recommendations 

In this work, we introduced a new parameter of domination in graphs - the outer-connected inverse 

domination in graphs. The outer-connected inverse domination in the join of two graphs were 

characterized. The exact outer-connected inverse domination number resulting from this binary operation 

of two graphs were computed. This study will pave a way to new research such bounds and other binary 

operations of two graphs. Other parameters involving outer-connected inverse domination in graphs may 

also be explored. Finally, the characterization of an outer-connected inverse domination in graphs and its 

bounds is a promising extension of this study. 
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