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Abstract 

Shop scheduling is a critical part of manufacturing systems. The goal is to find an efficient schedule that 

optimizes system performance. Finding a feasible schedule becomes more difficult as the number of jobs and 

machines increases. The present research aims to study the computational study of different optimization 

methods to solve job flow shop scheduling problems. This paper reviews computational research of varying 

optimization methods to solve job flow shop scheduling problems. We discuss Johnson's algorithm, 

Campbell, Dudek, and Smith's (CDS) Approach, and Gantt chart and propose a Minimax optimization. This 

new method has the least processing time in the machine in the current situation. We present substantial 

computational results using MiniMax optimization techniques. From the result, we can conclude that the 

proposed algorithm gives less processing time and more frequently an optimal schedule than the other studied 

methods. 

 

Keywords: Job flow shop scheduling, Johnson's algorithm, CDS Approach, Gantt chart, MiniMax 

Optimizing algorithm 

 

1. Introduction 

The job-shop scheduling problem involves scheduling n jobs to be processed by m dedicated machines. Each 

job must go through all the machines in a specific order. The time required for each job on each machine is 

predetermined and cannot be changed. Jobs cannot overlap on machines and no job can be processed 

simultaneously by multiple machines. It is not allowed to interrupt a job once it has started. The primary 

objective is to schedule the jobs in a way that minimizes the makespan, which is the maximum time taken by 

any job to complete. Despite being a highly researched optimization problem, solving the job-shop scheduling 

problem optimally remains a considerable challenge. 

Some simplified versions of the job-shop scheduling problem are still classified as NP-Hard. For instance, 

the problem of scheduling three machines and three jobs with an arbitrary number of operations per job (where 

a job may have to visit a machine more than once) is NP-Hard [1]. Similarly, scheduling three machines and 

unitary processing times or three machines and no more than two operations per job is also NP-Hard [1, 4]. 

However, there are some particular cases of the job-shop scheduling problem that can be solved in polynomial 

time. For example, the problem of scheduling two machines and no more than two operations per job can be 
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solved in polynomial time [3], as well as the problem of scheduling two machines and unitary processing 

times [2]. 

According to the authors' understanding, all the proposed algorithms for solving the job-shop scheduling 

problem are branch-and-bound procedures. Although not an exhaustive list, some notable works include those 

of Applegate and Cook [10], Brucker et al. [5], Carlier and Pinson [6], Lageweg et al. [7], and Martin and 

Shmoys [8]. 

A schedule is a plan that allocates a specific time interval for each operation. However, a more helpful way 

of representing this is through the disjunctive graph model developed by Roy and Sussmann [9]. In this model, 

the disjunctive graph is represented as G = (0, A, E), where O is the set of vertices that corresponds to the 

operation set, A is the set of arcs that corresponds to the job precedence constraints, and E is the set of edges 

that corresponds to the machine capacity constraints. 

Several branch-and-bound methods have been developed for solving the job-shop scheduling problem to 

optimality; the more recent ones were proposed by Carlier and Pinson [7,11], Applegate and Cook [10], and 

Brucker, Jurish, and Sievers [5]. These methods require a large amount of computation time and therefore it 

is not practical to apply them to many instances of even modest size. Carlier and Pinson [7] solved the famous 

10-job 10-machine instance of the job-shop scheduling problem proposed by Fisher and Thompson [12], 

which remained unsolved for a long period and largely motivated the development of algorithms for this 

scheduling problem. Applegate and Cook presented 7 problems they could not solve optimally, where the 

smallest one has 10 machines and 15 jobs. Recently, Louren [13] proposed a new lower bound for the job-

shop scheduling problem, which is a strengthening of one frequently used, and is based on solving a one-

machine scheduling problem with additional constraints corresponding to minimal lags of time between the 

process of some pairs of jobs. 

This paper proposes a new framework of job scheduling algorithm to decrease job completion time, improve 

the load balance, and satisfy users’ priority demands. According to the result, the algorithms proposed in this 

paper outperform the Minimum processing time MPT optimizing algorithm in terms of makespan, load 

balancing, and user-priority awareness. 

 

2. Combinatorial Optimization Problems 

Optimization problems involve finding the best possible solution from multiple available solutions. 

Combinatorial optimization is an optimization problem that aims to discover the optimal solution from a finite 

set of solutions. It involves identifying an objective function's maximum or minimum value in a discontinuous 

domain with a vast configuration space. The traveling salesman problem, job-shop scheduling, and Boolean 

satisfiability are examples of combinatorial problems. 

A combinatorial optimization problem is defined formally as a quadruple 𝐼, 𝑚, 𝑛, 𝑓 where 𝐼 is a set of 

instances, 𝑚(𝑥) contains all possible solutions, given an instance  𝑥 ∈ 𝐼, 𝑥 is an instance and 𝑦  is a viable 

solution, 𝑥, ℎ(𝑥, 𝑦)  is the measure of 𝑦 which is usually a positive real number. 𝑓 is the goal function either 

minimum or maximum. 

The goal is to find an optimal solution 𝑦 for some instance 𝑥 with ℎ(𝑥, 𝑦) = 𝑓{ℎ(𝑥, 𝑦)⎸𝑦′ ∈ 𝑚(𝑥)}. 

Solution Techniques for Combinatorial Optimization Problems 

• Exact Methods (Branch and Bound, Dynamic Programming, Integer Programming) 
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• Heuristics (Greedy algorithms, Rule-based algorithms) 

• Metaheuristics (Genetic Algorithms, Simulated Annealing, Ant Colony Optimization) 

2.1 Job flow shop problems 

The Job Flow Shop scheduling problem is one of the most challenging scheduling problems manufacturers 

face. It is unique because it caombines elements of both flow shop and job shop environments. With multiple 

stages and one or more machines at each stage, all jobs must pass through these machines efficiently. The task 

of scheduling jobs across multiple machines at each stage in an efficient manner is a daunting task that requires 

careful planning and execution. 

In a job flow shop, each stage may contain multiple identical or distinct machines, and the job processing 

order can vary from stage to stage. This setup complicates the scheduling process, requiring mathematical 

models to optimize job sequencing and machine allocation. 

One common mathematical representation for hybrid flow shop scheduling is as follows: 

Let: 

• 𝑛 be the number of jobs to be processed. 

• 𝑚 be the number of stages. 

• 𝑚𝑗 be the number of machines in stage 𝑗. 

• 𝑝𝑖𝑗  represent the processing time of job 𝑖 at stage 𝑗. 

• 𝐶𝑖𝑗be the completion time of job 𝑖 at stage 𝑗. 

• 𝑆𝑖𝑗  be the start time of job 𝑖  at stage 𝑗. 

Decision Variables: 

Binary decision variable 𝑥𝑖𝑗𝑘   represents whether job 𝑖 is processed on the machine 𝑘 at stage 𝑗.  

𝑥𝑖𝑗𝑘 = {
 1, if job 𝑖 is processed on machine 𝑘 at stage 𝑗 
0,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                  

 

Objective Function: The objective is typically to minimize some measure of the schedule's performance, such 

as makespan (the time to complete all jobs) or total flow time. 

Constraints: 

1. Each job must be processed exactly once at each stage: 

∑ 𝑥𝑖𝑗𝑘 = 1,    ∀  𝑖, 𝑗

𝑚𝑗

𝑘=1

 

2. Each machine can process at most one job at a time:   

∑ 𝑥𝑖𝑗𝑘 ≤  1,    ∀  𝑗, 𝑘

𝑛

𝑖=1

 

3. Precedence constraints to ensure that the processing order of jobs is respected between stages. 

4. Non-negativity constraints: 𝑥𝑖𝑗𝑘 ≥ 0, ∀  𝑖, 𝑗, 𝑘 

These constraints ensure that each job is assigned to exactly one machine at each stage, each machine 

processes at most one job at a time, and the processing order of jobs is maintained between stages. 

Solving the job flow shop problem involves finding values for the decision variables that minimize the 

objective function while satisfying all constraints. Various optimization techniques such as mathematical 
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programming (e.g., mixed-integer linear programming), heuristic algorithms (e.g., genetic algorithms, 

simulated annealing), or metaheuristic approaches (e.g., tabu search, ant colony optimization) can be 

employed for this purpose. 

2.2  Johnson's Algorithm 

 Johnson's algorithm is a way to find the shortest paths between all pairs of vertices in an edge-weighted 

directed graph. It allows some of the edge weights to be negative numbers, but no negative-weight cycles may 

exist. It works by using the Bellman-Ford algorithm to compute a 

transformation of the input graph that omits all negative weights, allowing Dijkstra's algorithm to be used on 

the transformed graph. It is named after Donald B. Johnson, who first published the technique in 1977. 

A similar re-weighting technique is also used in Suurballe's algorithm for finding two disjoint paths of 

minimum total length between the same two vertices in a graph with non-negative edge weights. 

Johnson's algorithm consists of the following steps: 

First, a new node p is added to the graph, connected by zero-weight edges to each of the other nodes. 

The next step involves implementing the Bellman-Ford algorithm which starts from the new vertex p. It aims 

to find the minimum weight g(v) of a path from p to every vertex v. However, if this step detects a negative 

cycle, the algorithm must be stopped. 

The Bellman-Ford algorithm recomputes the shortest path from a source vertex to all other vertices but with 

negative edge weights allowed. 

Finally, after removing the vertex p, Dijkstra's algorithm is applied to find the shortest paths from each node 

to all other vertices in the re-weighted graph. To compute the distance in the original graph, the value of g(v) 

- g(u) is added to the distance returned by Dijkstra's algorithm for each distance D(u,v). 

 Example: 

 The first three stages of Johnson's algorithm are depicted in the illustration below. 

 

 
The graphic representation illustrates three graphs, each with unique characteristics. The first graph, located 

on the left, features negative edges but no negative cycles. The second graph portrays the shortest path tree 

calculated by the Bellman-Ford algorithm, with a new vertex 'p' as the starting point. The third graph is a re-

weighted graph generated by substituting each edge weight with w(u,v) + g(u) - g(v). Notably, the re-weighted 

graph exhibits non-negative edge weights, and the shortest path between nodes is identical to that of the 

original graph.  

To conclude, Dijkstra's algorithm is applied to the four starting nodes within the re-weighted graph. In the re-

weighted graph, every path linking a pair of nodes s and t includes a uniform quantity added to it. 
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2.3 Campbell, Dudek, and Smith (CDS) Approach 

The CDS heuristic is an extension of the two-machine scheduling approach, generalizing it to scenarios 

involving more than two machines.   

CDS approach is a heuristic algorithm for solving flow shop scheduling problems. It works well for unrelated 

parallel machines. It was proposed by Campbell, Dudek, and Smith in 1985. 

Here's a brief overview of the CDS approach: 

1. Initialization: Begin by randomly generating an initial sequence of jobs. 

2. Local Search: Use local search to improve the solution by iteratively swapping job pairs to minimize the 

makespan. 

3. Neighborhood Structure: Neighborhood structure specifies which solutions are considered for local 

search. In CDS, swapping adjacent job pairs in sequence form the neighborhood. 

4. Stopping Criterion: Define a stopping criterion for the search, such as a maximum iteration limit, a 

threshold for improvement, or a pre-defined computational boundary. 

5. Restart Mechanism: Use a restart mechanism to explore different regions of the solution space by 

periodically restarting the search from different initial solutions. 

CDS is a heuristic approach for flow shop scheduling, ideal for unrelated parallel machines. It finds near-

optimal solutions quickly without using complex optimization methods. Though not optimal, CDS provides 

good-quality solutions promptly, making it suitable for real-time scheduling decisions with limited 

computational resources. 

2.4 Gantt Chart 

A generalized Activity Normalization Time Table (GANTT) chart is a type of chart in which a series of 

horizontal lines are present that show the amount of work done or production completed in a given period 

about the amount planned for those projects. It is a horizontal bar chart developed by Henry L. Gantt 

(American engineer and social scientist) in 1917 as a production control tool. It is simply used for the 

graphical representation of a schedule that helps to plan efficiently, coordinate, and track some particular 

tasks in a project.  

The purpose of the Gantt chart is to emphasize the scope of individual tasks. Hence set of tasks is given as 

input to the Gantt chart. Gantt chart is also known as a timeline chart. It can be developed for the entire project 

or it can be designed for individual functions. In most projects, after the generation of the timeline chart, 

project tables are prepared. In project tables, all tasks are listed properly along with the start date and end date 

and information related to it.  

Gantt chart represents the following things:  

• Gantt chart is a horizontal bar chart used to represent operating systems. The horizontal bars indicate the 

required time by corresponding particular tasks.  

• When occurring of multiple horizontal bars take place at the same time on the calendar. The diamonds 

indicate milestones 

This chart is a horizontal bar chart used to represent operating systems scheduling in a graphical view that 

helps to plan, coordinate, and track specific CPU utilization factors like throughput, waiting time, turnaround 

time, etc. 
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3. Proposed MiniMax Optimizing Algorithm 

The MiniMax optimizing algorithm is simple. It starts with a set S of all unmapped jobs J. Then the machine 

M which has the minimum completion time for all jobs is found. Next, the job J with the minimum size is 

selected and assigned to the corresponding machine R. Last, the job J is removed from set S and the same 

procedure is repeated until all tasks are assigned (i.e., set S is empty). The pseudo-code of MiniMax 

optimizing algorithm is represented assuming we have a set of n jobs (J1, J2, J3 … Jn) that need to be 

scheduled onto m available machines (M1, M2, M3 … Mm). We denote the Expected Completion Time for 

job k (1≤k≤n) on machines i (1≤i≤m) as 𝐶𝐽𝑖𝑘  that is calculated, where 𝑟𝐽𝑘 represents the ready time of the 

machine 𝑀𝑖 and 𝐸𝑡𝑖𝑘  represents the execution time of jobs 𝐽𝑘  on machine 𝑀𝑖. 

Input:    

Vertex: machines, jobs consequently 

Edges: Processing step of the corresponding job on the corresponding machine  

Weight: Processing time 

Output:  

Minimize the make-span of FSSP 

• All jobs visit all machines 

• No idle time for the machine 

• Machines ≥  Jobs 

• Ignored machine set-up time 

• Machine 𝑀𝑖; 𝑖 = 1,2, … . . 𝑚  𝑎𝑛𝑑 𝐽𝑜𝑏 𝐽𝑘; 𝑘 = 1,2, … , 𝑛 

Algorithm: 

For all submitted jobs in the set 𝐽𝑘; 

For all machines 𝑀𝑖;  

𝐶𝐽𝑖𝑘 = 𝐸𝐽𝑖𝑘 + 𝑟𝐽𝑘;  

End;  

End;  

Do while jobs set is not empty  

Find job 𝐽𝑘  that cost least processing time.  

Assign 𝐽𝑘  to machine 𝑀𝑖 which gives least expected time  

Remove 𝐽𝑘  from the jobs set  

Update ready time𝑟𝐽𝑘  for select 𝑀𝑖 

Update 𝐶𝑖𝑘  for all  𝐽𝑘  

 End Do 

 

4. Computational Results 

Example 1. Solve 2 machines 6 jobs scheduling problems by (i) Jonhson’s Algorithm (ii) Gantt Chart (iii) 

MiniMax Optimizing Algorithm 
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      Job 

 

Machine 

 

J1 

 

J2 

 

J3 

 

J4 

 

J5 

 

J6 

 

Total 

M1 1 3 8 5 6 3 26 

M2 5 6 3 2 2 10 28 

 

(i) Johnson’s Algorithm:  

If SPT (shortest processing time) is for 1st machine, do that job first and 

If SPT is for 2nd machine, do that job last. 

According to this algorithm, the job sequence will be  

 

J1 J6 J2 J3 J4 J5 

 

The In-Out table will be: 

 

Machine 

        

M1 

          

M2 

 Idle 

time  

M1 

Idle 

time 

M2 

Job In Out In Out   

J1 0 1 1 6 - 1 

J6 1 4 6 16 - - 

J2 4 7 16 22 - - 

J3 7 15 22 25 - - 

J4 15 20 25 27 - - 

J5 20 26 27 29 3 - 

    total 3 1 

Total Elapsed time = 29  

Idle time for M1= 3 = 29-26 

Idle time for M2= 1 = 29-28 

 

(ii) Gantt Chart: 

 
According to the Gantt Chart 

Total Elapsed time = 28 

Idle time for M1= 2 = 28-26 

Idle time for M2= 0  
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(iii) MiniMax Optimizing algorithm 

We implement the new algorithm and then compare. 

 

 
According to the proposed MiniMax optimizing algorithm, the table becomes: 

Job                 M1              M2  

Sequence↓ In Out Delay In Out Delay 

S1 J1 1 - J4 2 - 

S2 J2 1+3=4 - J5 2+2=4 - 

S3 J6 7 - J3 7 - 

S4 J4 12 - J1 12 - 

S5 J5 18 - J2 18 - 

S6 J3 26 2 J6 28 - 

 

According to the MiniMax optimizing algorithm 

Total Elapsed time = 28 

Idle time for M1= 2 = 28-26 

Idle time for M2= 0 

Example-2: 

Solve 3 machine 7 jobs scheduling problems by (i) Campbell, Dudek, and Smith (CDS) Approach (ii) Gantt 

Chart (iii) MiniMax Optimizing Algorithm 

 

     Jobs 

Machine 

J1 J2 J3 J4 J5 J6 J7 Total 

M1 3 8 7 4 9 8 7 46 

M2 4 3 2 5 1 4 3 22 

M3 6 7 5 11 5 6 12 52 

 

(i) Campbell, Dudek, and Smith (CDS) Approach: 

     Convert 3 machines into 2 machines: 

   min(𝑡1𝑗)≥ max(𝑡𝑖𝑗)  𝑜𝑟  min(𝑡𝑘𝑗) ≥ max(𝑡𝑖𝑗);
                𝑖 = 2,3, … , 𝑘 − 1

                            𝑘 = 𝑛𝑜.  𝑜𝑓 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠  
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Since the 2nd condition is satisfied, so according to this algorithm, we create two fictitious machines from 

3, say MI and MII. Now 

MI =𝑡1𝑗 + 𝑡2𝑗 

MII =𝑡3𝑗 + 𝑡2𝑗 

The problem is converted into 2 machine Problems: 

          job 

machine 

J1 J2 J3 J4 J5 J6 J7 

M1 7 11 9 9 10 12 10 

M2 10 10 7 16 6 10 15 

 

According to Johnson’s algorithm, the job sequence will be  

J1 J4 J7 J2 J6 J3 J5 

 

The In-Out table will be: 

 

According to the CDS approach, 

Total Elapsed time = 59 

Idle time for:  M1= 59-46=13, M2= 59=37, M3=59-52=7 

 

(ii) Gantt Chart: 

 

  M1        

 M2 

      

M3 

 Idle time For 

Sequence In Out In Out In Out M1 M2 M3 

J1 0 3 3 7 7 13 - 3 7 

J4 3 7 7 12 13 24 - - - 

J7 7 14 14 17 24 36 - 2 - 

J2 14 22 22 25 36 43 - 5 - 

J6 22 30 30 34 43 49 - 5 - 

J3 30 37 37 39 49 54 - 3 - 

J5 37 46 46 47 54 59 13 19 - 

    Total            delay time 13 37 7 

                        
M3                                               
                        
M2                                                          
M1                                              

                                               

                     45 46 52 
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According to the Gantt Chart 

Total Elapsed time = 52 

Idle time for M1= 52-46= 6 

                   M2= 4+5+14+7= 30 

                   M3= 52-52= 0 

 

(iii) MiniMax Optimizing Algorithm: 

 
 

 

 

 

The In-Out table will be: 

J7   

J6   

J5   

J4   

J3   

J2   

J1   

Job  M1   M2   M3  

sequence↓ In Out Delay In Out Delay In Out Delay 

S1 J1 3 - J5 1 - J3 5 - 

S2 J4 7 - J3 7 4 J5 10 - 

S3 J3 14 - J7 10 - J1 16 - 

S4 J7 21 - J2 13 - J6 22 - 
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According to the MiniMax optimizing algorithm 

Total Elapsed time = 52 

Idle time for: M1= 6, M2= 30, M3= 0 

 

5. Comparison and Analysis 

1. Comparison tables for 2 machines n jobs and 3 machine n jobs: 

Table-1 

 Total elapsed time  Idle time for M1 Idle time for M2 

Johnson’s algorithm 29 3 1 

Gantt chart 28 2 0 

MiniMax optimizing 

algorithm 

28 2 0 

 

2. machines n jobs comparison 

Table-2 

 Total elapsed 

time  

Idle time for M1 Idle time for M2 Idle time for M3 

CDS Approach 59 13 37 7 

Gantt chart 52 6 30 0 

MiniMax 

optimizing 

algorithm 

52 6 30 0 

3. machines n jobs comparison 

This comparative analysis aimed to evaluate the efficiency and cost of a production factory. Efficiency was 

measured based on processing time and cost evaluations. The results indicated that the Gantt chart and 

MiniMax optimizing algorithm were less time-consuming compared to other algorithms. Additionally, both 

the Gantt chart and MiniMax optimizing algorithm produced the same result, but the MiniMax optimizing 

technique was easier to calculate than the Gantt chart. 

This study discovered that the MiniMax optimizing algorithm is the most efficient and cost-effective 

production factory solution, providing reduced processing time and superior long-term efficiency. It's perfect 

for those who prioritize long-term operational sustainability and user engagement.  

 

6. Conclusion 

This paper focuses solely on the MiniMax algorithm for job scheduling emphasizing makespan and user-

priority. Other scheduling algorithms, such as Round Robin, Max-Min, and Genetic Algorithm (GA), could 

S5 J2 29 - J6 26 9 J4 33 - 

S6 J6 37 - J1 30 - J2 40 - 

S7 J5 46 6 J4 35 17 J7 52 - 

 Total 46 6  35 30  52 0 
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be developed. However, there are many outstanding issues to address, such as job deadlines, the high 

heterogeneity of interconnection networks, the geographic location of jobs and machines, and other quality 

of service requirements that could be subjects of future research. Although the jobs in this paper are 

independent, they may have precedence relations in real-life scenarios. We plan to investigate and enhance 

this algorithm for such job types. 
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