

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Spidy: Hexapod Robot

Aromal A¹, Ajin Johnson², Irin M S³, Naveen A V⁴, Arya S⁵

^{1,2,3,4}UG Scholar, Department of Electronics and Communication Engineering, Dr. APJ Abdul Kalam Technological University, Kerala, India.

⁵Assistant Professor, Department of Electronics and Communication Engineering, Dr. APJ Abdul Kalam Technological University, Kerala, India.

Abstract

This paper presents the details about the design of a hexapod robot powered using ESP32 which has the ability to operate and work in areas containing humans that are hard to reach. The robot has as well equipped with on board sensors and cameras that allow it to perform object searching by itself. Subsequently, it uses algorithms trained with machine learning to sort and recognize the targets. The robotic structure consists of six legs, allowing the robot to perform movement on different types of surfaces while keeping its stability intact. Once the object is found the robot uses an arm installed onboard to grab and secure the object, which makes it useful for various applications such as operations in search and rescue missions, environmental studies, and inspection purposes in factories. The system based on ESP32 provides the capabilities of processing the information in real time and moving and controlling the hexapod robot and its parts from a distance which makes the hexapod suitable for undergoing tasks which require accuracy and which are not able to be carried out by a human being.

Keywords: Firefighting Robots, Autonomous Navigation, Fire Detection, Extinguishing Technology, Robotics, Safety Systems, Artificial Intelligence, Real-Time Operations.

1. INTRODUCTION

The feature of this leg mechanism constructed for this robot is that it can adjust its length, angle and extent of stiffness in a dynamic manner, which allows the robot to master many kinds of different kinds of terrain. These changes allow the robot to adapt its legs to the ground even if the ground is rocky or sloped or there are irregularities on it instantaneously. For instance, on uneven rocky grounds, the mechanism is able to retract the legs in an attempt to increase stiffness in order to achieve a certain level of balance, conversely, if the ground is soft, they may extend outward and the angles may shift in order to maintain stability and succeed in passage. Such capability as adaptability in real-time greatly increases the retention of the robot and averts the risk of it falling or slipping and therefore greatly increasing the possibility of it being able to balance itself without falling on the ever-changing workspace. Therefore, such system is well suited for operations that require traversing through colonies or surface features such as rescues, farmlands or planetary bodies for instance Mars for example. In order to make mobility easier and more advanced, the robot employs a fully integrated suite of sensors which produce terrain maps while identifying and detecting obstacles and also aid in moving objects. With these sensors, the robot will be able to see where it is and what surrounds it, and will produce detailed terrain models that will help it in deciding the best and most optimal routes to take while avoiding physical structures. The sensors also allow for a better grip of objects and thus better handling of objects making it easy to manipulate them. In addition to these, the

robot has a sufficient communication network that provides the chances of working far away from the robot using remote monitoring and control Possibilities. The system also enables real-time patching and updates of the software meaning that if any problem were to occur, it would be easy to fix and the robot wouldn't have to stop working even if it was in a remote or hard to reach place. The combination of mobility, awareness and communication puts the robot at a higher rank when looking to use it in autonomous and semi-autonomous tasks that require the robot to operate in tough conditions.

2. LITERATURE REVIEW

Chuanqi Zheng, Siddharth Sane, Kangneoung Lee, Vishnu Kalyanram [1]: The robot α -WaLTR belongs to a new generation of mobile adaptative robots by this which aims at achieving a combination of the advantages of the legs and the wheels. Transformable wheels coupled with spring suspension which are able to reduce vibrations, enhancing robustness while crossing rough or even difficult terrains. The design is specifically aimed to ensure efficient obstacle climbing and traversing through complex terrains or stair systems become a hassle-free task. The robot has been tested through simulations and actual physical experimentation has been able to demonstrate autonomous spatial perception of stairs, and followed by climbing these stairs. These features and performance clearly indicate the areas where α -WaLTR can be potentially useful such as burdened mobility in disaster areas, urban constructions or industrial sites where the mobility over the boundaries and rough structures need to be applied for executing the goals set by the system.

Mariano Garduño-Aparicio, Juvenal Rodríguez-Reséndiz, Gonzalo Macias-Bobadilla [2]: The paper presents a robot prototype designed for an undergraduate laboratory program focused on teaching embedded systems and robotics, in accordance with ABET accreditation criteria. This is an emphasis on interdisciplinary learning, fostering the development of technical skills and the application of theoretical knowledge to practical, real-world problem-solving tasks. A digital electronics course at Universidad Autónoma de Querétaro, Mexico, exemplifies this initiative. Results showed that the prototype of the robot significantly enhanced the students' learning experiences as demonstrated by positive feed backs and better academic outputs. ABET criteria analysis also indicates that the project offers an integration of hands-on activities with theory teaching, benefiting students on both embedded systems and robotics.

Rabia Jafri, Rodrigo Louzada Campos, Syed Abid Ali, and Hamid R. Arabni [3]: The paper introduces an innovative obstacle detection system designed for visually impaired users, utilizing both visual and infrared sensor data from the Google Project Tango Tablet Development Kit. The system tracks the user's motion and orientation in 3D space and reconstructs the surrounding environment using the Unity engine. By associating a Unity collider with the user, it detects interactions with obstacles in the reconstructed environment and gives audio warnings of potential dangers to alert users. Empirical testing has shown promising results, indicating the system's effectiveness and potential for further development to improve navigation assistance for visually impaired individuals.

Yan Dong, Haotian Yang, Shanliang Liu, Guangshuai Gao, Chunlei Li [4]: The paper introduces a one-stage object detection network for optical remote sensing images, addressing complex backgrounds and weak object visibility. Some of the key innovations include the localization attention mechanism that is integrated into deep feature maps and the small object compensation strategy that enhances the detection of weak objects through fusion operations. The proposed background separation strategy also effectively distinguishes foreground objects from background noise. The model shows strong performance across three public datasets, obtaining mean Average Precision (mAP) scores of 94.2% on NWPU VHR10, 70.7

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

% on DIOR and 80.5% on the DOTA dataset.

Shujie Ji, Wu Wei, Xiongding Liu, Junqi Wu[5]: This paper talks about making hexapod robots more stable on rough terrains using a new control method. The method combines reinforcement learning with foot impedance control and a special reward system to improve how the robot walks. By planning the robot's steps and using feedback from its feet and body position, the robot can optimize its movements automatically. The approach uses a model to transform the walking problem into a sequence decision-making issue, which can be tackled using a Markov decision process. The reward system helps the robot adapt its gait, making it more stable and efficient in moving over rough ground. This method also reduces the need for complex internal sensors, making the robot more practical. Simulation tests show that this new method performs much better than older techniques, especially in terms of stability and distance traveled.

Jingang Du; Hongde Qin; Zhongchao Deng; Zhongben Zhu; Xiaojian Cao; Xiaokai Mu[6] : This paper focuses on designing an amphibious crab-like robot that can navigate tough environments like the seabed and narrow spaces near walls. It delves into essential design aspects, such as the robot's body shape, leg proportions, and the ratio of body width to overall width, which are crucial for its efficient operation in these challenging areas. The researchers have developed two main leg postures to improve the robot's performance: a walking posture that helps it sense and navigate its surroundings more effectively, and a standing posture that ensures high stability. They also optimized the foot landing points in the surf zone, allowing the robot to move smoothly and securely on uneven, dynamic surfaces. These design enhancements aim to create a versatile and highly functional robot capable of performing complex tasks in harsh aquatic environments.

Paper Title	Authors	Comparative Study
Adaptive wheel and leg to	Chuanqi Zheng, Siddharth	In this paper a new generation
transformable robot for	Sane, Kangneoung Lee,	robot that is adaptive that
versatile multi terrain	Vishnu Kalyanram	combines the advantages of legs
locomotion		and wheels, featuring
		transformable wheels with spring
		suspension for enhanced
		robustness on rough terrains.
		Designed to efficiently climb
		obstacles and navigate complex
		terrains, including stairs, it has
		demonstrated autonomous spatial
		perception and stair-climbing
		abilities in both simulations and
		physical tests. α-WaLTR's
		capabilities make it potentially
		useful in disaster areas, urban
		construction, and industrial sites
		where navigating boundaries and
		rough structures is essential.

3. PAPER COMPARISON

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

A Multidisciplinary Industrial	Mariano Garduño-Aparicio,	The paper introduces a robot
Robot Approach for Teaching	Juvenal Rodríguez-Reséndiz,	prototype used in an
Mechatronics	Gonzalo Macias-Bobadilla	undergraduate laboratory
		program to teach embedded
		systems and robotics, meeting
		ABET accreditation standards.
		This initiative, exemplified by a
		digital electronics course at
		Universidad Autónoma de
		Querétaro, Mexico, emphasizes
		interdisciplinary learning and
		practical problem-solving. The
		results showed significant
		enhancements in students'
		learning experiences and
		academic performance, with the
		ABET criteria analysis
		highlighting the project's
		effective integration of hands-on
		activities and theoretical teaching.
Visual and Infrared Sensor	Rabia Jafri, Rodrigo Louzada	The paper presents a novel
Data-Based Obstacle Detection	Campos, Syed Abid Ali, and	obstacle detection system for
for the Visually Impaired	Hamid R. Arabni	visually impaired users,
Using the Google Project		leveraging visual and infrared
Tango Tablet Development Kit		sensor data from the Google
and the Unity Engine		Project Tango Tablet to track
		motion and reconstruct the
		environment in 3D using the
		Unity engine. By associating a
		Unity collider with the user, the
		system detects obstacle
		interactions and provides audio
		warnings of potential dangers.
		Empirical tests have shown
		promising results, highlighting
		the system's effectiveness and
		potential for enhancing
		navigation assistance for visually
		impaired individuals.
Optical Remote Sensing	6, 6,	The paper introduces a one-stage
Object Detection Based on	Shanliang Liu, Guangshuai	object detection network for
Background Separation and	Gao, Chunlei Li	optical remote sensing images,
		featuring innovations like a

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com

Small Object Compensation		localization attention mechanism
Strategy		and a small object compensation
		strategy to enhance detection of
		weak objects. It also employs a
		background separation strategy to
		effectively distinguish
		foreground objects from
		background noise. The model
		demonstrates strong performance
		with mean Average Precision
		(mAP) scores of 94.2% on
		NWPU VHR10, 70.7% on DIOR,
		and 80.5% on the DOTA dataset.
Optimization Control of	Shujie Ji, Wu	This paper introduces a new
Attitude Stability for Hexapod	Wei, Xiongding Liu, Junqi	control method for enhancing the
Robots Based on	Wu	stability of hexapod robots on
Reinforcement Learning		rough terrains by combining
		reinforcement learning with foot
		impedance control and a
		specialized reward system. By
		optimizing the robot's steps
		through feedback from its feet
		and body position, the approach
		transforms the walking problem
		into a sequence decision-making
		issue, addressed via a Markov
		decision process. Simulation tests
		demonstrate that this method
		significantly outperforms older
		techniques in terms of stability
		and distance traveled, while also
		reducing the need for complex
		internal sensors.
Structural and Kinematic	Jingang Du; Hongde	This paper details the design of an
Analysis of an Amphibious	Qin; Zhongchao	amphibious crab-like robot
Crab-Like Robot for	Deng; Zhongben	optimized for tough environments
Nearshore Environmental	Zhu; Xiaojian Cao; Xiaokai	like seabeds and narrow spaces
Applications	Mu	near walls. Key design aspects
		include the robot's body shape,
		leg proportions, and body-to-
		width ratio, enhancing its
		performance and stability. The
		researchers developed walking
	<u> </u>	researchers developed waikilig

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

and standing leg postures, and
optimized foot landing points for
secure movement on uneven
surfaces, making the robot
versatile for complex tasks in
harsh aquatic environments.

4. CONCLUSION

Hexapod robots, inspired by insect locomotion, are one of the most important advances in robotics, offering stability and versatility on diverse terrains unmatched by any other type of robot. Their six-legged configuration allows for complex movement patterns, enabling these robots to navigate environments that would be difficult or impossible for wheeled or bipedal robots. From search and rescue missions in disaster-stricken areas to the exploration of extraterrestrial surfaces, hexapod robots have applications in a wide range of fields. Their ability to adapt to uneven and unpredictable surfaces makes them invaluable for tasks that require robust and reliable mobility. Moreover, the evolution of hexapod robots continues to expand the possibilities of what can be achieved with robotics. Improvements in sensor technology, artificial intelligence, and material science are making hexapod robots more capable and autonomous. The integration of advanced navigation systems, developed on the basis of machine learning algorithms, allows hexapod robots will become even more integrated into a variety of sectors, transforming industries and enhancing human capabilities in ways never thought possible. The future of hexapod robots promises exciting developments and transformative impacts on both technology and society.

REFERENCES

- Chuanqi Zheng, Siddharth Sane, Kangneoung Lee, Vishnu Kalyanram, "α-WaLTR Adaptive wheel and leg to transformable robot for versatile multi terrain locomotion", IEEE Transaction of robotics, VOL 39, NO 2, April 2023.
- Mariano Garduño-Aparicio, Juvenal Rodríguez-Reséndiz, Gonzalo Macias-Bobadilla, "A Multidisciplinary Industrial Robot Approach for Teaching Mechatronics", IEEE Journal, May 2023.
- 3. Yan Dong, Haotian Yang, Shanliang Liu, Guangshuai Gao, Chunlei Li, **"Optical Remote Sensing Object Detection Based on Background Separation and Small Object Compensation Strategy"**, IEEE Earth Observation and Remote Sensing Journal, VOL 79, NO 11, January 2024.
- Rabia Jafri, Rodrigo Louzada Campos, Syed Abid Ali, and Hamid R. Arabni, "Visual and Infrared Sensor Data-Based Obstacle Detection for the Visually Impaired Using the Google Project Tango Tablet Development Kit and the Unity Engine", IEEE Transaction of robotics, VOL 39, NO 2, April 2022.
- 5. Shujie Ji, Wu Wei, Xiongding Liu, Junqi Wu, "Optimization Control of Attitude Stability for Hexapod Robots Based on Reinforcement Learning", IEEE Access Journal, VOL 12, October 2024
- Jingang Du; Hongde Qin; Zhongchao Deng; Zhongben Zhu; Xiaojian Cao; Xiaokai Mu, "Structural and Kinematic Analysis of an Amphibious Crab-Like Robot for Nearshore Environmental Applications", IEEE Access Journal, VOL 13, September 2024