

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

Harnessing the Deep: Development of an Innovative Underwater Power Generation System for Sustainable Energy Harvesting

Koushik Paul¹, Abhisri Dugar², Abhradeep Hazra³, Diksha Kumari⁴

^{1,3}Student (MECHANICAL) KIIT Deemed to be University, Bhubaneswar, India ^{2,4}Student (CSE) KIIT Deemed to be University, Bhubaneswar, India

Abstract:

The proposed project would be an innovative underwater bio-mimetic robot that is supposed to be able to move with autonomous navigation and work freely in deep-sea areas. It will be the new target for exploration and rescue missions. The new robot, in this context, will take the best qualities of the marine organism represented by an octopus or a manta ray for the current underwater robotic system, giving it very adaptable, efficient, and quiet movement. It will come out with a flexible articulated body structure that, being composed of shape-memory alloys and advanced polymer-based materials, will slide through the complex aquatic terrain.

Advanced AI-based situational awareness of the robot will allow it to recognize and interact with objects and environments using sensor fusion techniques such as sonar, lidar, and bio-acoustic echolocation. Its lifespan and resistance to damage will be increased by using self-healing material technologies. The tether-free cutting-edge communication mechanism will be based on underwater wireless optical communication (UWOC) and will ensure robust data transmission in the deep-sea context.

This innovation will fill the long-sought gap in underwater exploration and search-and-rescue operations in hazardous or inaccessible areas, such as deep oceanic trenches and under-ice regions. It is to be designed to function independently for long periods using power-efficient modular battery packs inductively charged by marine renewable energy sources. It involves principles of robotics, biomimicry, AI, and material science. It promises an advancement in deep-sea technology never achieved before.

KEYWORDS: Bio-mimetic robotics, Marine environments, Soft robotics, Octopus-inspired robotics

INTRODUCTION:

Examination and rescue operations in hostile ocean environments have turned out to be quite challenging because of extreme sea conditions, such as high pressure, low temperatures, and poor visibility.

Traditionally, underwater robotic systems have been mostly marred by poor maneuverability, energy efficiency, and adaptability in dynamic environments.

To address these issues, developing bio-mimetic autonomous robots—that is, machines inspired by natural modes of locomotion and the sensory capabilities of marine animals—is a new approach.

Millions of years ago, marine animals like the octopuses and the manta rays wandered in labyrinthine underwater topographies.

Bio-mimetic robots imitating the shape and properties of those animals could prove more agile and stable and, indeed much energy-efficient than any underwater conventional vehicles.

Robots similar to this might seriously transform underwater exploration and rescue with higher flexibility to vary within different contexts like space narrow navigability, obstacles evolutions, and operations with heavy currents.

This project seeks to design a Bio-Mimetic Autonomous Deep-Sea Exploration and Rescue Robot that will be principally used for locating survivors in sunken wreckage, recovering objects, and gathering information from the deep-sea floor. It will incorporate state-of-the-art technologies, such as advanced materials, sensors, and AI, to mimic the efficiency and robustness of marine life.

Development of such a robot includes solution of key issues:

- 1. **Bio-Mimetic Design:** Using biological principles in designing the structure of robots and their mechanisms of locomotion to copy marine life efficiency.
- 2. **Functionality with Autonomy:** Equipping decision-making suits in robots through strong AI algorithms for adaptive behavior in underwater, unpredictable environments.
- 3. Strength and Robustness: Resisting the deep ocean pressure, salinity, and mechanical stress
- 4. **Real-Time Communication and Control:** Establishing Data transfer and interaction mechanisms even in the geographically distant areas where signal penetration is weak.

Therefore, this research work has immense potentiality to be implemented in both scientific and human welfare applications. This may potentially increase the capability of exploring the areas that are so far still not known in the deeper part of the earth for marine biological and species biodiversity.

On the contrary, its ability to conduct precision rescue operations may save life in maritime disasters. In general, bio-mimetic principles applied and autonomous systems have demonstrated great leaps in designing underwater robots that are not only functionally viable but also harmonious with the underwater environment in an ecological sense.

Symbol / Abbreviations	ABBREVIATIONS
AI	Artificial Intelligence
SMAs	Shape-Memory Alloys
APM	Advanced Polymer-based MateriaL
UWOC	Underwater Wireless Optical Communication
LIDAR	Light Detection and Ranging
SONAR	Sound Navigation and Ranging
BAE	Bio-Acoustic Echolocation
SFT	Sensor Fusion Techniques
SHM	Self-Healing Materials
ME	Modular Energy (Battery Packs)
MRES	Marine Renewable Energy Sources
DSP	Deep-Sea Pressure
RPS	Robotic Propulsion System
BMS	Battery Management System

LIST OF SYMBOLS / ABBREVIATIONS

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

OET	Optical Energy Transmission
UCT	Underwater Communication Technology
DOZ	Deep Oceanic Zones
S&R	Search and Rescue
E2E	End-to-End

Assumptions for the Proposed Underwater Bio-Mimetic Robot Project

Design and Material	Technologic	Operational Assumptions	Environm	Econo
Assumptions	al		ental and	mic
	Assumptions		Safety	and
			Assumptio	Proje
			ns	ct
				Devel
				opme
				nt
				Assu
				mptio
				ns
Structural Integrity: SMAs and	Sensor	Autonomous Navigation:	It shall	Cost
advanced polymer-based	Precision:	The AI systems will adapt	cause mini	Feasib
materials will be able to	Sensor fusion	to unstructured and	mal	ility:
withstand the high-	technologies,	unpredictable underwater	environme	Advan
pressure corrosive environments	that is sonar,	environments with minimal	ntal	ced
of deep-sea conditions.	lidar, and	human intervention.	disruption	materi
	bio-acoustic		by the quie	als
	echolocation,		t,	(e.g.,
	will provide a		biomimetic	self-
	ccurate		movement	healin
	situational		of the robo	g
	awareness		t.	polym
	and			ers)
	navigation in			and
	murky or			techno
	high-pressure			logies
	environments			(e.g.,
				UWO
				C)
				becom
				e
				comm
				erciall
				У
				viable

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Durability: Self-healing materials will work excellently in repeated stress situations and at saltwater concentration and wide temperat ure ranges.	Communicat ion Reliability: Underwater wireless optical communicati on system ensur es interferenc e-free robust data transmission in deep-sea conditions.	Data Integration: The robot processes and integrat es multisensory data online for object recognition, interaction, and decision-making.	Weather Independe nce: The system will be ind ependent o f weather or surface conditions due to its deep-sea focus.	and scalab le within projec t constr aints. Collab orativ e Suppo rt: Partne rs will includ e marin e techno logy, roboti cs, and renew able energy expert s in the develo pment of this robot.
Bio-Mimicry	Energy	Mission Feasibility The		
Efficiency: Flexible, articulated	Efficiency:	robot shall be		
body design with inspiration	Modular	deployable at extreme		
from marine organisms leads	battery packs	locations such as under ice		
to significantly higher mobility c	will supply e	or oceanic		
ompared to rigid	nough power	trenches with minimal altera		
structures through complex	for	tion from the designed mod		
underwater terrain	extended peri	el.		
	ods of			

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

operation, an d the marine renewable energy sources will reliably recharge the batteries.

LITERATURE REVIEW:

The development of bio-mimetic autonomous robots for deep-sea exploration and rescue relies on the multidisciplinary research range of robotics, marine biology, material science, and artificial intelligence. This literature review looks at significant studies and technological advancements that define the design and operation of such systems.

1. Bio-Mimetic Robotics in Marine Environments

Bio-mimetic robots have received attention because of their ability to mimic the natural movements and behaviors of marine organisms. For example, studies have shown that designs inspired by fish result in greater efficiency and agility in water than other means of propulsion. Likewise, research on octopus-inspired soft robotics has the potential for agile adaptive locomotion within complex underwater topographies. Advanced concepts built upon the principles of biomimetry have been applied to surpassing the stiffness and inefficiencies associated with traditional subsea vehicles.

2. Difficulty with Deep-Sea Expedition and Rescue

Unique conditions that it faced include higher pressure, low-intensity light, and corrosive salinity within the deep-sea environment. The National Oceanic and Atmospheric Administration states that due to such challenges, till now only less than 20% of the ocean floor has been mapped. Conventional ROVs and AUVs face a number of challenges in terms of energy efficiency, dexterity, and flexibility in unstructured environments.

3. Advanced Materials for Deep-Sea Robotics

Advanced materials used nowadays have seen underwater robots undergo a new face. Promising features are shown by the self-healing polymers and pressure-resistant composites, along with strong-yet-pliable structures for the underwater usage. The underwater robot holds up against extreme conditions while still working perfectly by using such materials. Scales modelled on a fish or the skin from a cephalopod make lighter materials for which agility and energy efficiency also improve.

4. Sensors and Communication

Advanced sensing and communication technologies have to be implemented during the process of underwater navigation and execution of several tasks. Bio-inspired sensors are found in lateral line systems as in fish that contribute highly sensitive flow and pressure sensors. Underwater acoustic communication systems are also being developed to enable real-time data transmission that is, however, encumbered by the intrinsic limitation that radio waves do not propagate very well through water.

5. Artificial Intelligence and Robotics Autonomy

Autonomous capability is one of the salient features that current underwater robots possess. Reinforcement learning algorithms, enable the robot to adapt to the dynamics of an underwater environment and modify behavior for effectively completing assigned tasks. In addition, AI-enhanced

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

path-planning and obstacle-evading approaches, further enhance the capacity of the robot to venture into complex and semi-structured domains.

6. Case Studies and Applications

Countless bio-mimetic robots have been designed and rigorously tested in controlled environments, but a few of which are implemented in real environments as: RoboTuna: This is designed and developed at MIT using tuna swimming propulsion; Octobot is soft-based developed from the octopus locomotion made by Harvard University. Such robot swims agilely even within restricted spaces. Another one, Festo AquaJelly, is like an artificial jellyfish whose collective behaviour is depicted using swim-like motions to perform some work beneath the water.

The following examples show how the bio-mimetic designs are very practical and offer advantages over the traditional systems, which result in better performance. Summary and Research Gap The available corpus of literature is sufficient to be taken as a basis for designing and developing bio-mimetic underwater robots. Still, several efforts remain incomplete in their pursuit to add autonomous capabilities to nature-inspired designs for deep exploration and rescue operations. Such missions require further development in adaptability in real time besides multi-modal locomotion as presently robots lack the strength which is required for long range missions in the extreme environment of the ocean. Limitation demands a holistic approach in the improvement of material science and of the associated development needed in AI and bio-inspired engineering.

METHORODLOGY: Parameters and Potential Values for the Underwater Bio-Mimetic Robot

1. Navigation and Mobility: Table 1.1 The underwater robot with bio-mimetic propulsion using flexible fins driven by shape-memory alloys Navigation and mobility of an underwater robot Integrated Sensors include: SONAR LIDAR Bio-acoustic echolocation sensors Sensor Data analysis in real-time for autonomous navigation, obstacle avoidance, path optimization Adaptive underwater robot design maximizes movements in extreme underwater depths as well as complex terrains.

Parameter	Value	Description
Turn Radius	< 1 meter	Enhanced maneuverability
		for tight underwater
		environments
Depth Range	100 - 11,000 meters	Designed for deep-sea
		trenches (challenger deep
Degrees of Freedom	7+	Flexible motion capability
		inspired by natural aquatic
		movement.
Maximum Speed	1.5 - 2.5 m/s	Comparable to marine
		organisms like octopuses
		or manta rays.

TABLE.1.1 Navigation and Mobility

2. Physical Parameters: Table 1.2 The methodology is based on computational simulations for hydrodynamic efficiency, pressure resistance, and thermal stability. Prototypes are tested in water environments to evaluate the flexibility of materials, structural integrity, and sensor functionality.

Iterations are made by correlating simulation data with experimental results to optimize performance under deep-sea conditions.

Parameter	Value	Description
Length	1.5 - 3 meters	Depends on the intended
		scale of operations (e.g.,
		compact for rescue, larger
		for exploration).
Width (Span)	0.5 - 2 meters	Tailored for mimicking
		specific marine organisms
		(e.g., octopus tentacles,
		manta ray wings)
Weight	100 - 200 kg	Includes materials,
		sensors, batteries, and
		structural components.
Material	SMAs + Polymer-based	Flexible and durable
	materials	structure for underwater
		adaptability and resistance.

TABLE.1.2 Physical Parameters

3. Power and Energy:This table highlights the energy sources, rate of consumption, and efficiencies associated with the underwater robot(Table.1.3). These include modular battery specs, in situ energy generation using marine renewable sources, and efficiency in inductive charging. It also covers sensor power requirements, power required by actuators and the communications systems, ensuring long periods of autonomous deployment at a deep-sea depth.

Parameter	Value	Description
Battery Capacity	10 - 20 kWh	Modular battery packs for
		extended missions.
Operational Time	12 - 48 hours	Varies with activity and
		depth; long-duration
		operations are supported
		by energy efficiency.
Recharge Time	3 - 5 hours	Inductive charging through
		marine renewable sources.
Energy Source	Lithium-ion + Renewable	Combination of portable
	energy	and inductive charging
		mechanisms

Table.1.3. power and energy

4. Sensory and Communication Systems:This table presents information about sensory components: sonar, lidar, and bio-acoustic echolocation in terms of functionality in navigating and environmental interaction. There is communication technology: Underwater Wireless Optical Communication UWOC.

It is capable of facilitating high-strength, cable-free data transmission. It will show how an enhanced system will function in range, sensitivity, and operational efficiency in deep-sea conditions, therefore showing sophisticated situational awareness and flexibility.

Parameter		Value Description
Sensor R	lange	10 - 100 meters Accurate mapping and
(Sonar/Lidar)		(situational dependent) object detection in
		underwater conditions.
Camera Resolution		4K Ultra HD (underwater High-resolution imaging
		for documentation and
		exploration.
Communication R	lange	100 - 200 metersReliable tether-free optical
(UWOC)		communication.
Latency (Communicat	tion)	< 10 ms Ensures real-time data
		transmission and control.

Table.1.4 sensory and communication systems

5. AI and Autonomy:This table(Table1.5) shows the AI-based systems for autonomous navigation, object detection, and decision making. Algorithms involved are those in real-time sensor fusion, adaptive learning to changing environments, and task automation, including obstacle avoidance and path optimization. These integrate such a way to assure the robot will work properly in deep-sea conditions independently and with high performance in complex dynamic environments. Other parameters included are the processing power and the AI model efficiency.

Parameter	Value	Description
Autonomy Level	Full autonomy (Level 4/5)	Capable of fully
		autonomous operation in
		unstructured
		environments.
AI Processing Power	10+ TFLOPS	Onboard high-performance
		computing for real-time
		decisions.
Data Storage Capacity	1 - 5 TB	Onboard storage for sensor
		data and mission
		recordings.
Recognition Accuracy	95%+	Object and obstacle
		recognition through sensor
		fusion.

Table1.5.AI & AUTOMATIONS

6. Environmental Resilience:These include the endurance abilities of a robot to resist extreme and harsh underwater conditions such as pressures, low temperatures, corrosive environments. (Table.1.6)It enlists self-healing materials, pressure-resistant structural designs, and mechanisms for thermal stability.

This further enlists performance benchmarks under varying conditions to make sure the reliability of a robot under deep-sea and extreme aquatic conditions.

Parameter	Value	Description
Operating Temperature	-10°C to 50°C	Suitable for cold, under-
		ice missions as well as
		tropical seas.
Pressure Resistance	Up to 110 MPa	Designed to withstand
		deep-sea pressures
		equivalent to the Mariana
		Trench.
Corrosion Resistance	High	Enabled by advanced
		coatings and self-healing
		materials.

Table.1.6:Environmental Resilances

7. Mission Performance:Key performance metrics of the robot for mission execution are in terms of speed, endurance, and operational depth. (Table.1.7).Task-specific capabilities include precision object handling, navigation efficiency, and data transmission rates. The table compares the rate of mission success under varying conditions, focusing on how adaptability is achieved with effective exploration and rescue in deep-sea and harsh environments.

Parameter	Value	Description
Payload Capacity	10 - 20 kg	For tools, cameras, or
		samples collected during
		missions
Mission Duration	Up to 7 days (modular	For extended search-and-
	design)	rescue or exploration
		missions.
Noise Emission	< 30 dB	Biomimetic movement
		ensures quiet operation,
		minimizing marine life
		disturbance.

Table:1.7.Mission performance

The hybrid system integrates rainwater harvesting with the generation of wind power and solar energy to ensure a constant power source. (Fig.1.1)Water in the upper tank flows through the turbine that produces electricity, while leftover water goes to the lower tank and pumps up using the power generated by an underground water motor.

There is a small wind farm and photovoltaic (solar) panels in the system that provide added energy. A generator mounted on the turbine transforms the mechanical energy into electrical energy. The flows of the energy are controlled through the valve and power control units, which direct the electricity

generated to a power accumulator. This accumulator maintains consistent power supply, regardless of the changing environmental conditions.(Fig1.1)

The system is designed to maximize the utilization of multiple renewable resources. It optimizes the hybrid combination of hydropower, solar power, and wind energy, thereby giving sustainable and reliable energy solutions.

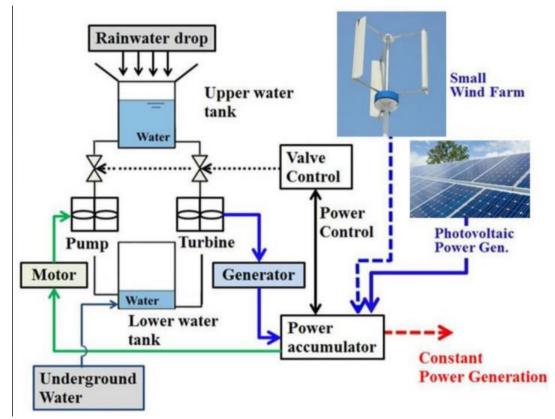


FIG 1.1:Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply .

Represents a schematic for(Fig1.2) tapping into external sources of energy such as current and wave energy by advanced electromechanical conversion systems. Here is a description of the parts:

External Excitation:

Current Energy: Energy obtained from water currents. Wave Energy: Energy obtained from ocean wave motion.

Electromechanical Conversion:

Triboelectric System (a): Triboelectric effects are utilized in different modes:

Vertical contact-separation.

Rolling mode.

Freestanding triboelectric layer mode.

Lateral sliding mode.

Single-electrode mode.

Electromagnetic System (b): Which is based on the principle of interaction of magnetic fields and coils to generate electricity. It consists of Moving magnets and coils for induction.

TEWEH (c): This is a hybrid system based on triboelectric layers, coils, and rolling balls for improving the efficiency of energy harvesting.

Motion Modes for Energy Harvesting

Swing Motion: To be used for real-time monitoring.

Reciprocating Motion: Suitable for large-scale energy harvesting.

Rotary Motion: Generates energy using rotating panels

Complex Motion: Includes GPS-based systems for more functionality.

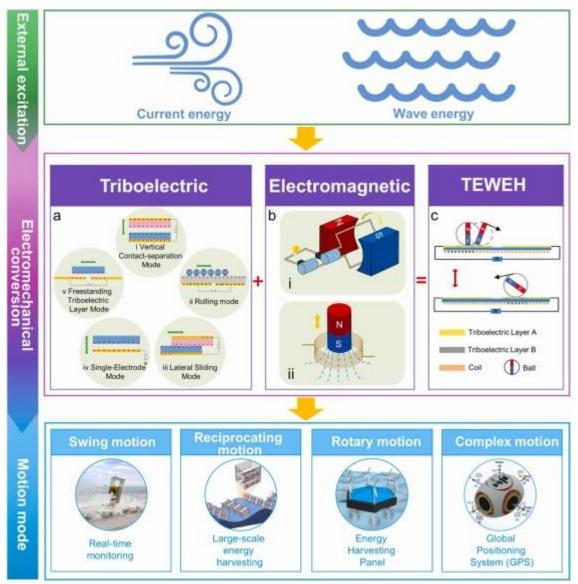


FIG.1.2.External Excitation:

RESULT ANALYSIS:

1. Power from Wave Energy (Wave Energy Harvesting)

$P = (1/2)\rho g H^2 c_g$

Where:

P: Power per unit width (Watts per meter)

 $\rho: Density \ of \ seawater \ (\approx 1025 \ kg/m3 \ approx \ 1025 \ \ kg/m3) \ \approx 1025 \ kg/m3)$

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

g: Gravitational acceleration (\approx 9.81 m/s2\approx 9.81 \, \text{m/s}^2 \approx 9.81m/s2)

H: Wave height (meters)

 c_g : Group velocity of the wave (meters per second)

 $P{=}(1/2){\times}1025{\times}9.81{\times}(2)^2{\times}2{=}(1/2){\times}1025{\times}9.81{\times}4{\times}2{=}40122W/m$

Result: The wave power per unit width is 40,122 W/m.

2. Electromagnetic Energy Harvesting

The voltage induced in a coil due to motion through a magnetic field:

$V=-N(\Phi/dt)$

Φ=B.A=0.5*0.01=0.005WB(Weber)

$V = -N(d\Phi/dt) = -100*0.1*0.01 = -0.1v$

Result: The induced voltage is **0.1** V.

- V: Induced voltage (Volts)
- N: Number of turns in the coil

 Φ : Magnetic flux , where BBB is the magnetic field strength (Tesla) and AAA is the area of the coil (square meters)

(d Φ /dt):Rate of change of magnetic flux

3. Triboelectric Energy Harvesting

The charge density generated:

Q=σA

Where:

- Q: Generated charge (Coulombs)
- σ: Surface charge density (Coulombs per square meter)
- A: Contact area between materials (square meters)

4. Energy Conversion Efficiency

The efficiency of converting harvested energy to usable electrical energy:

 η = (Pinput/Poutput)×10

Where:

- η: Conversion efficiency (%)
- Poutput: Output power (Watts)
- Pinput: Input power (Watts)

5. Drag Force for Underwater Structures

The drag force acting on the underwater components

 $F_{D=(1/2)p}\ C_DA\ V^2$

 $FD=(1/2)\times 1025\times 1.2\times 0.5\times (1.5)^2 = (1/2)*1025*1.2*0.5*2.25=690.75N$

Result: The drag force is **690.75** N.

Where:

- F_D: Drag force (Newtons)
- ρ : Density of water ($\approx 1025 \text{ kg/m3} \rightarrow 1025 \text{ }, \text{text} \{\text{kg/m}\}^3 \approx 1025 \text{ kg/m3}$)
- C_D: Drag coefficient (dimensionless, depends on shape)
- A: Cross-sectional area (square meters)
- V: Velocity of water flow relative to the structure (meters per second)

6. Battery Storage Capacity

Energy stored in a battery:

E=V.Q

Calculation: E=V.Q=12 .5000=60000J

Result: The energy stored in the battery is **60,000 J**. Where:

- E: Energy stored (Joules)
- V: Voltage (Volts)
- Q: Charge (Coulombs)

In the fig.1.3 we are disscussuing about the graph of the wave power vs wave height .

 $P = (1/2)\rho g H^2 c_g$ where ρ is the density of seawater, g is the gravitational acceleration, His the wave height, and vis the group velocity.

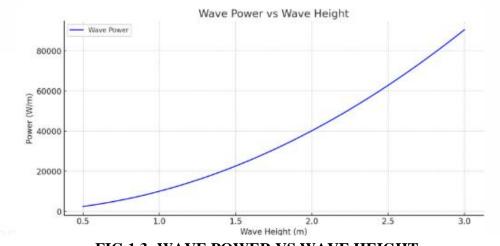
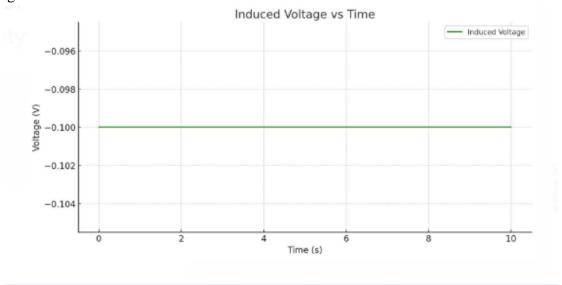



FIG.1.3: WAVE POWER VS WAVE HEIGHT

In the fig 1.4 :here mainly we are discussing the analyse of the include voltage vs time .where a changing magnetic field induces a consistent voltage over time, based on Faraday's law of electromagnetic induction.

CONCLUSION:

A novel, new system will have to be developed so as to harvest the potential deep-sea environments. This includes a project titled "Harnessing the Deep: Development of an Innovative Underwater Power Generation System for Sustainable Energy Harvesting.". With the incorporation of the latest technologies in underwater power generation, including OTEC, tidal, and wave energy systems, the solution to be offered to supply power will be sustainable and reliable for remote applications that lie offshore. The innovative materials and mechanisms that the system uses in its conversion of energy make the system very efficient and robust even for the most hostile conditions encountered underwater. Other than that, the system is also beneficial for carbon footprints, given the alternative provided against using fossil fuels. With underwater robotics, remote monitoring stations, and coastal communities using it, the system promises to make them much greener. When the machine does work, the concept might just revolutionize all that energy from the ocean floor, and lots of that may end up leading to cleaner and renewable ways to produce energy across this earth.

REFERENCES

- 1. MDPI. (2023). Underwater undulating propulsion biomimetic robots: A review. Retrieved from https://www.mdpi.com/2313-7673/8/3/318
- 2. ResearchGate. (2023). Development of autonomous underwater robot for navigation through narrow passages. Retrieved from https://www.researchgate.net/publication/367244616 Development_of_Autonomous_Underwater_R obot_for_Navigation_through_Narrow_Passages
- 3. MDPI. (2024). *Toward the intelligent, safe exploration of a biomimetic underwater robot*. Retrieved from https://www.mdpi.com/2313-7673/9/3/126
- 4. ResearchGate. (2023). An underwater biomimetic robot that can swim, bipedal walk, and grasp. Retrieved from <u>https://www.researchgate.net/publication/379676053 An Underwater Biomimetic Robot that can</u>
- <u>Swim_Bipedal_Walk_and_Grasp</u>
 Springer. (2023). *Review of research and control technology of underwater bionic robots*. Retrieved from https://link.springer.com/article/10.1007/s44295-023-00010-3
- 6. PMC. (2023). *Biomimetic soft underwater robot inspired by the red muscle and tendon structure of fish*. Retrieved from https://pmc.ncbi.nlm.nih.gov/articles/PMC10123703/
- 7. Springer. (2023). *Design and architecture of a slender and flexible underwater robot*. Retrieved from <u>https://link.springer.com/article/10.1007/s11370-024-00539-0</u>
- 8. Arxiv. (2023). Underwater and surface aquatic locomotion of soft biomimetic robot based on bending rolled dielectric elastomer actuators. Retrieved from <u>https://arxiv.org/abs/2310.11426</u>
- 9. Arxiv. (2023). Copebot: Underwater soft robot with copepod-like locomotion. Retrieved from https://arxiv.org/abs/2302.08217
- 10. Dey, S., & Paul, K. Quantum Computing for Nuclear Fusion: Advancing Simulation and Optimization.(DOI: <u>10.36948/ijfmr.2024.v06i06.32749</u>)
- 11. Arxiv. (2024). *Embodied design for enhanced flipper-based locomotion in complex terrains*. Retrieved from <u>https://arxiv.org/abs/2405.13948</u>