

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 1

Plant Diseases Classification

Sahana R1, Radhika Relekar2, Srustisingh DT3, S. Firoze Ahamed4,

Prof. Prasad PS5

1,2,3,4Student, Presidency university

5Professor, Presidency university

Abstract

This project aims to create an effective deep learning model for classifying plant diseases using image data

from the PlantVillage dataset. The primary objective is to accurately detect different plant diseases and

identify healthy plants, aiding in agricultural monitoring and decision-making. The dataset comprises

labeled images of plants with diseases affecting crops such as tomatoes, peppers, and potatoes.

A Convolutional Neural Network (CNN) serves as the foundation for this image classification task,

implemented using the TensorFlow and Keras libraries. The workflow involves preprocessing the data,

dividing it into training and testing subsets, and training the model using categorical cross-entropy as the

loss function. The model achieves a high accuracy of 96% when tested on a dataset of 2,065 images.

Additional evaluation metrics, including precision, recall, and F1-score, highlight the model's reliability,

particularly in detecting diseases

This classification system provides a practical solution for early disease detection, contributing to reduced

crop losses and improved agricultural outcomes. Future work could involve leveraging transfer learning,

deploying the model in real-world scenarios, and extending its application to other crops and diseases.

 I Introduction

Agriculture plays a vital role in human survival, with food security serving as a cornerstone of societal

stability. However, the rising incidence of plant diseases poses a serious challenge to agricultural

productivity, endangering global food supplies. Effective and timely disease detection is critical to

safeguarding crop health, mitigating risks, and supporting sustainable farming practices. Early

identification of plant diseases not only minimizes the impact on crop yields but also optimizes resource

usage and reduces dependence on chemical treatments, which can harm the environment and lead to

financial losses.

Historically, plant disease detection relied on human observation, where farmers or agricultural experts

inspected crops for signs of disease. While these methods are valuable, they are often subjective,

timeintensive, and less effective for large-scale operations. Moreover, traditional approaches lack the

precision and scalability required to address the complexities of modern agriculture.

Recent advancements in technology, particularly in image processing and artificial intelligence (AI), have

transformed plant disease detection. Early computational techniques, such as K-means clustering and

support vector machines (SVM), offered promising results by analyzing visual characteristics of diseased

plants. However, these methods depended heavily on manual feature extraction and segmentation, limiting

their adaptability to diverse agricultural conditions.

Deep learning (DL) technologies, particularly convolutional neural networks (CNNs), have emerged as

powerful tools for plant disease detection. Unlike earlier approaches, CNNs automatically extract

significant features from raw images, enabling precise disease classification. These models are wellsuited

for large datasets and varying imaging conditions, providing robust solutions for disease identification.

Furthermore, the adoption of transfer learning has enhanced CNN performance, allowing pre-trained

models to be fine-tuned for specific datasets, improving efficiency even for smaller-scale applications.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 2

This paper explores the evolution of plant disease detection technologies, tracing the shift from traditional

image processing methods to cutting-edge deep learning techniques. It highlights the strengths and

limitations of these approaches, examines recent research in the field, and identifies opportunities for future

advancements. By leveraging AI-driven solutions, this study aims to contribute to increased agricultural

productivity and global food security.

Addressing the challenges of plant disease management underscores the need for automated and accurate

detection systems to minimize crop losses. This capstone project focuses on developing a deep learning-

based framework for classifying plant diseases using the PlantVillage dataset. The goal is to design a robust

model capable of identifying a variety of plant diseases and recognizing healthy crop conditions,

empowering farmers and stakeholders to make informed decisions.

The dataset comprises thousands of labeled, high-resolution images of plants, covering multiple species

such as tomatoes, peppers, and potatoes, as well as various disease states, including Pepper Bacterial Spot,

Tomato Mosaic Virus, Tomato Early Blight, Tomato Yellow Leaf Curl Virus, and Potato Late Blight. The

data preprocessing pipeline includes resizing images, normalizing pixel values, and splitting the dataset

into training, validation, and test subsets to ensure balanced and comprehensive model evaluation.

A CNN architecture, implemented using TensorFlow and Keras, is developed for this project. Training

strategies, such as data augmentation, are employed to address class imbalances and improve the model's

generalizability. The model is optimized using categorical cross-entropy as the loss function and the Adam

optimizer. Hyperparameters, including learning rate, batch size, and epoch count, are fine-tuned to enhance

model performance.

The trained model achieves an impressive test accuracy of 96% on a dataset of 2,065 images, effectively

classifying plant diseases. Key performance metrics, including precision, recall, and F1-scores, are

calculated for individual classes, confirming the model's reliability. Additional tools, such as confusion

matrices and accuracy/loss graphs, are used to visualize and evaluate the model's performance.

This system provides a practical and scalable solution for plant disease detection, with potential

applications in real-world agriculture through integration with mobile apps and IoT platforms. The project

lays the groundwork for future improvements, such as leveraging transfer learning for larger datasets,

implementing real-time monitoring systems, and extending the model to include additional crops and

disease types. By applying machine learning, this work promotes sustainable farming practices, better crop

management, and enhanced food security.

 II Methodology

The methodology for this plant disease classification project was structured into several key stages to

develop a reliable and efficient model for detecting plant diseases from images. Each step was carefully

executed to ensure optimal performance.

1. Dataset Collection and Exploration

The project utilized the publicly available PlantVillage dataset, which provides labeled images of healthy

and diseased plant leaves across various species, including tomatoes, peppers, and potatoes. The dataset

features images of several diseases such as Pepper Bacterial Spot, Tomato Mosaic Virus, Tomato Early

Blight, Tomato Yellow Leaf Curl Virus, and Potato Late Blight. Exploratory Data Analysis (EDA) was

performed to investigate the dataset’s composition, assess class distributions, and examine image

dimensions.

2. Data Preprocessing

The data underwent several preprocessing steps to prepare it for model training:

• Image Resizing: Images were resized to a consistent dimension (e.g., 128x128 or 224x224 pixels) to

standardize inputs for the model.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 3

• Normalization: Pixel values were scaled to the range [0, 1], improving training efficiency by enabling

faster convergence.

• Data Splitting: The dataset was divided into training, validation, and testing subsets with a ratio of

70:15:15, ensuring a balanced evaluation of the model’s generalization capabilities.

• Data Augmentation: To address class imbalance and enhance model robustness, augmentation techniques

like rotation, flipping, zooming, and shifting were applied to the training images.

3. Model Architecture Design

The classification model’s architecture was designed to extract and process image features efficiently:

• Feature Extraction: Layers designed to capture spatial patterns and features from the images were added,

with activation functions ensuring non-linear learning.

• Dimension Reduction: Pooling operations reduced the spatial size of features, lowering computational

costs while retaining essential information.

• Classification Layers: Fully connected layers were used to map the extracted features to output categories,

with a final activation layer designed for multi-class classification.

• Regularization: Dropout layers were integrated to reduce overfitting by randomly disabling neurons during

training, improving the model’s ability to generalize.

4. Model Training

The training process incorporated several strategies and configurations to achieve optimal results:

• Loss Function: Categorical cross-entropy was employed to optimize multi-class classification

performance.

• Optimizer: The Adam optimizer was used due to its adaptive learning rate and computational efficiency.

• Training Parameters: A batch size of 32 and a maximum of 50 epochs were set to allow proper convergence

of the model.

• Early Stopping: To prevent overfitting, training was stopped automatically when the validation loss

stabilized.

• Hardware Acceleration: The training process leveraged GPU support to significantly reduce computation

time.

5. Model Evaluation

Once the model was trained, its performance was assessed using a range of metrics to ensure reliability:

• Accuracy: The overall accuracy of the model was calculated on the test dataset.

• Precision, Recall, and F1-Score: These metrics were evaluated for each class to measure the model’s

ability to handle imbalanced categories.

• Confusion Matrix: A confusion matrix was used to visualize predictions, identify misclassifications, and

analyze class-level performance.

• Performance Visualization: Plots of training and validation accuracy and loss were generated

to monitor the model’s progress during training and identify potential areas of improvement.

 III Deep Learning Architectures

The plant disease classification model is based on a Convolutional Neural Network (CNN), a robust method

for image classification tasks. CNNs are effective at extracting spatial and hierarchical features from plant

leaf images, making them ideal for accurate disease detection. This architecture is designed to achieve a

balance between computational efficiency and high accuracy, ensuring effective classification across

multiple disease categories.

The model begins with an input layer that accepts pre-processed images resized to 128x128x3 (height,

width, and color channels), ensuring uniformity during training. The core structure consists of three

convolutional blocks. Each block applies a set of learnable filters (kernels) that extract spatial features such

as edges and textures. ReLU (Rectified Linear Unit) activation is used to introduce non-linearity, enabling

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 4

the network to capture complex patterns in the data. Following each convolutional layer, MaxPooling

operations with a 2x2 pooling size downsample the feature maps, reducing spatial dimensions while

preserving key features. This results in progressively smaller feature maps as the data flows through the

layers.

To prevent overfitting, Dropout layers with a rate of 0.4 are added after the pooling layers. These layers

randomly deactivate neurons during training, encouraging the network to generalize better and avoid

memorizing the training data. The output from the convolutional and pooling layers is then flattened into a

1D vector using a Flatten layer, preparing the data for the fully connected layers.

The fully connected layers, responsible for learning high-level abstractions from the extracted features,

include two dense layers. The first dense layer has 256 neurons, while the second layer contains 128

neurons, both with ReLU activation. A Dropout layer is also applied after the first dense layer to further

mitigate overfitting. The output layer contains 15 neurons, each corresponding to one of the 15 disease

classes, including a healthy class. A softmax activation function is used in the output layer, generating a

probability distribution over the 15 classes, with the sum of probabilities equal to 1.

The model is trained using the Adam optimizer with a learning rate of 0.001, which adapts the learning rate

during training to speed up convergence. The categorical cross-entropy loss function is selected for multi-

class classification, and model performance is evaluated using metrics such as accuracy, precision, recall,

and F1-score. The training process runs for 50 epochs with a batch size of 32, and early stopping is

employed to halt training when validation loss no longer improves. Here is a summary of the architecture

components:

Layer Type

Filters/Units

Kernel Size

Activation Output Shape

Input Layer - - - (128, 128, 3)

Convolutional Layer 1 32 3*3 ReLU (128, 128, 32)

Max Pooling Layer 1 - 2*2 - (64, 64, 32)

Dropout Layer 1 - - - (64, 64, 32)

Convolutional Layer 2 64 3*3 ReLU

(64, 64, 32)

Max Pooling Layer 2 - 2*2 - (32, 32, 64)

Dropout Layer 2 - - - (32, 32, 64)

Convolutional Layer 3 128 3*3 ReLU

(32, 32, 128)

Max Pooling Layer 3 - 2*2 - (16, 16, 128)

Flatten Layer - - - (32768)

Fully Connected Layer

1

256 - ReLU

(256)

Dropout Layer 3 - - - (256)

Fully Connected Layer

2

128 - ReLU

(128)

Output Layer 15 - Softmax (15)

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 5

Figure 1 Some of the plant diseases from the PlantVillage dataset

This model is a comprehensive deep learning approach for classifying plant diseases based on leaf images,

effectively leveraging strengths in spatial feature extraction and pattern recognition.

 IV Data Augmentation

Data augmentation is a critical process in this project to improve the performance and generalization of the

Convolutional Neural Network (CNN) for plant disease classification. It helps mitigate class imbalance

and boosts the variability of the training data without needing to gather additional images. By applying

various transformations to the existing dataset, the model becomes more robust to variations commonly

found in real-world agricultural scenarios, such as changes in orientation, scale, and lighting.

Purpose of Data Augmentation

Class Imbalance: Some plant diseases in the PlantVillage dataset have fewer samples than others. Data

augmentation helps create a more balanced dataset by artificially increasing the number of samples for

underrepresented classes.

Prevention of Overfitting: Augmentation introduces small variations to the training images, preventing the

model from memorizing the data and encouraging it to learn generalized features instead. Enhancing Model

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 6

Robustness: By simulating real-world conditions such as varying leaf orientation, lighting differences, and

noise, the model becomes better equipped to handle unseen data. Techniques Applied for Data

Augmentation

Several augmentation methods were utilized on the training images using tools like TensorFlow’s

ImageDataGenerator or Keras utilities:

Rotation:

Description: Images are randomly rotated within a certain range (e.g., 0–40 degrees).

Purpose: Helps the model recognize disease patterns on leaves in various orientations.

Horizontal and Vertical Flipping:

Description: Images are flipped both horizontally and vertically to generate mirrored versions. Purpose:

Ensures the model doesn't overfit to a specific leaf orientation, allowing it to handle different angles.

Zooming:

Description: Random zooming in on the images (e.g., 0–20%).

Purpose: Helps the model capture finer details of disease spots, even when they appear at varying scales.

Shifting:

Description: Random horizontal and vertical shifts (e.g., up to 20% of the image dimensions). Purpose:

Prepares the model to recognize plant diseases even when the leaves are not centered in the image.

Brightness and Contrast Adjustment:

Description: Random adjustments to the image’s brightness and contrast levels.

Purpose: Simulates different lighting conditions, which are often encountered in outdoor environments.

Rescaling:

Description: Pixel values were normalized by rescaling them to the range [0, 1].

Purpose: Standardizes input images, helping to accelerate convergence during model training. Impact of

Data Augmentation

Expanded Dataset: Data augmentation helped increase the size of the training set, allowing the model to

generalize better.

Improved Model Performance: The model achieved a high test accuracy of 96%, benefitting from the varied

training examples produced through augmentation.

Reduced Overfitting: Smoother convergence in training and validation losses indicated that overfitting was

reduced, thanks to the augmented data.

Data augmentation was a crucial step in improving the robustness and accuracy of the plant disease

classification model. By introducing variations in orientation, lighting, scale, and positioning, the model

was better prepared to handle the challenges posed by real-world agricultural environments.

 V Classification Report for PlantVillage Dataset

The report summarizes the precision, recall, F1-score, and support metrics for each class within the

PlantVillage dataset. Below is the breakdown:

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 7

Figure 2 Classification report

Overall Accuracy: 96% Macro Average:

• Precision: 0.96

• Recall: 0.95

• F1-Score: 0.96 Weighted Average:

• Precision: 0.97

• Recall: 0.96

• F1-Score: 0.96

Total Samples Evaluated: 2065

This report provides an assessment of the model's classification performance on the PlantVillage dataset,

which includes 15 distinct classes.

 VI Dataset

A wide range of plant disease datasets is available, playing a critical role in advancing research on plant

health. The PlantVillage Dataset, for example, consists of more than 54,000 images representing 14

different crops, such as tomatoes, apples, and potatoes. It spans 26 unique diseases, including fungal,

bacterial, and viral infections, and also includes images of healthy plants to serve as a baseline. Another

notable dataset is the Plant Pathology Challenge dataset (CVPR 2020-FGVC7), which concentrates

specifically on apple crops. It features 3,651 annotated images depicting apple diseases like apple scab and

cedar apple rust, along with healthy leaf samples.

Researchers also develop custom datasets tailored for specific crops, such as corn, soybeans, and grapes,

which help track the various diseases affecting these plants. Additionally, advanced datasets utilizing

hyperspectral imaging technology enable the early detection of diseases by capturing symptoms invisible

to the naked eye. Further, datasets focusing on less common crops, such as litchi, papaya, longan, jujube,

chayote, soursop, and durian, offer insights into rare fungal, bacterial, and viral diseases. These datasets are

essential for improving disease identification and informing better management strategies.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 8

VII Software Specifications

The project leverages a comprehensive set of tools and technologies to ensure efficient development and

robust execution. Python (version 3.7 or later) serves as the primary programming language for its

versatility and rich ecosystem. Deep learning tasks are powered by TensorFlow 2.x and its Keras library,

while Scikit-learn is utilized for data preprocessing and splitting. Pandas and NumPy facilitate data

manipulation and analysis, whereas Matplotlib and Seaborn support data visualization and the creation of

insightful plots.

For image processing, OpenCV is employed for advanced data augmentation and preprocessing, while

Pillow is used for basic image manipulation tasks. The project is designed to run seamlessly on both Linux

(Ubuntu) and Windows operating systems, with Jupyter Notebook serving as the preferred environment for

integrating code and documentation. Google Colab enables cloud-based execution, and Git/GitHub are

used for version control and team collaboration.

Hardware Requirements

To achieve optimal performance, the project recommends a system with an Intel i7 or equivalent multi-

core processor for efficient data handling. A dedicated NVIDIA GPU (such as the RTX 2080, Tesla V100,

or similar) with at least 8GB of VRAM is essential for accelerating deep learning computations, along with

CUDA support for GPU-optimized operations. A minimum of 16GB of RAM is required to manage large

datasets and complex models effectively. For storage, at least 50GB of available space is necessary to

accommodate datasets, model weights, and results, with SSD storage being preferable for faster data access.

VIII Training Progress for PlantVillage Dataset

The training process of the model on the PlantVillage dataset is summarized below

Epoch Loss

Accuracy Validation

Loss

Validation

Accuracy

Learning

Rate

Duration (s)

1 6.2057 85.75% 6.2107 85.00% 0.00100 282

2 5.9579 88.75% 5.8137 90.00% 0.00100 278

3 5.7196 91.75% 5.6171 90.00% 0.00100 276

4 5.5996 90.25% 5.5144 92.50% 0.00100 276

5 5.4441 93.25% 5.4168 92.50% 0.00100 276

6 5.2834 94.25% 5.1253 97.50% 0.00100 276

7 5.1873 93.00% 5.0789 92.50% 0.00100 272

8 5.0470 92.75% 4.8416 95.00% 0.00100 280

9 4.8281 96.00% 4.6723 100.00% 0.00100 272

10 4.7747 91.75% 4.5649 100.00% 0.00100 273

Validation Accuracy: Reached 100% at epoch 9 and remained constant through epoch 10.

Loss Reduction: Both training and validation loss showed a consistent downward trend, with minor

fluctuations.

Training Time: Each epoch took approximately 4–5 minutes, with the total training process lasting 1 hour,

45 minutes, and 33 seconds.

The table effectively summarizes the model's training progression and highlights the significant milestones

achieved on the PlantVillage dataset.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 9

 IX Training Overview and Analysis

This report provides a comprehensive summary of the training process, including performance metrics,

observations, and insights derived during the model training phase.

1. Epoch-wise Performance Summary

The model underwent training for 10 epochs, with essential metrics such as loss, accuracy, validation loss,

and validation accuracy tracked at each step:

.Epoch 1:

o Loss: 6.2057 o Accuracy: 85.75% o Validation Loss: 6.2107 o Validation Accuracy:

85.00%

• Epoch 2:

o Loss: 5.9579 o Accuracy: 88.75% o Validation Loss: 5.8137 o Validation Accuracy:

90.00%

• Epoch 10 (Final Epoch):

o Loss: 4.7747 o Accuracy: 91.75% o Validation Loss: 4.5649

o Validation Accuracy: 100.00%

2. Key Observations

• Improvement in Metrics:

Throughout the 10 epochs, both training and validation metrics consistently improved. By the 9th epoch,

validation accuracy reached 100%, demonstrating the model's strong performance on unseen validation

data.

• Loss Reduction:

Training loss decreased significantly, dropping from 6.2057 in the first epoch to 4.7747 by epoch 10.

Similarly, validation loss reduced to 4.5649, indicating effective model learning and convergence.

• Early Stopping:

The training was manually halted at epoch 10, based on user input, despite the potential for further

improvement. This decision likely prevented overfitting while preserving optimal performance.

3. Training Process Insights

• Elapsed Time: The total training duration was 1 hour, 45 minutes, and 33 seconds, with each epoch

requiring approximately 27–28 minutes to complete.

• Learning Rate Stability:

The learning rate was consistently maintained at 0.001 throughout the training process. This constant value

facilitated steady and reliable progress in model optimization, preventing sudden fluctuations or instability

in the model's behaviour.

• User Interaction:

Training was stopped manually at epoch 10 based on observations of the validation metrics, emphasizing

user decision-making to halt the process at an optimal point.\

The training phase demonstrates the model's remarkable results, achieving 100% validation accuracy and

a significant reduction in loss values for both training and validation datasets. Manual early stopping at

epoch 10 effectively prevented overfitting while ensuring excellent generalization.

To enhance the model's outcomes in future iterations, the following adjustments can be considered:

1. Extending the Epochs: Allowing additional epochs to analyze further improvements.

2. Dynamic Learning Rate: Implementing learning rate decay or scheduling to fine-tune convergence.

3. Regularization Techniques: Including methods such as dropout or weight decay to enhance

generalization further.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 10

 X Performance Analysis of the Model

The results summarize the CNN’s effectiveness for plant disease classification across training, validation,

and testing phases. Below is a detailed breakdown of the findings:

1. Training Metrics

• Loss: 4.5910

• Accuracy: 96.55%

During training, the model showcased strong learning ability by substantially lowering the loss and

reaching an accuracy of 96.55%. This highlights the model's capability to effectively identify patterns and

features in the training data.

2. Validation Metrics

• Loss: 4.6073

• Accuracy: 95.73%

The validation results demonstrate that the model generalizes effectively to unseen data. A slight rise in

validation loss compared to training loss suggests minimal overfitting. The achieved validation accuracy

of 95.73% highlights the model's strong performance on the validation dataset.

3. Testing Metrics

• Loss: 4.5972

• Accuracy: 96.37%

The testing phase confirms the model's stability and robustness. With an impressive accuracy of 96.37%,

the model demonstrates consistent and reliable performance on completely unseen data. The similarity

between training, validation, and testing accuracies highlights its strong generalization ability.

4. Warnings Encountered During Training

• Data Exhaustion Warning: A TensorFlow warning indicated that the dataset might not have been repeated

sufficiently to satisfy the steps_per_epoch * epochs requirement. Solution: The repeat() function can be

applied to ensure a continuous data pipeline across epochs, preventing data exhaustion issues.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 11

• Training Interruption:

Despite these warnings, the training process completed without significant issues. The warnings had

negligible impact on the model’s performance, as evident from the high accuracy and stable loss values.

The CNN achieved high performance in all phases—training, validation, and testing—with accuracy

consistently above 95%. The warnings during training highlight potential improvements in data pipeline

management, such as ensuring the dataset meets the required batch generation for all epochs. Overall, the

model demonstrates strong capability and reliability for plant disease classification tasks.

Figure 3Performance Analysis of the Convolutional Neural Networks (CNN)

 XI Dataset Overview and Directory Structure

This section provides details about the dataset employed for training and evaluating the plant disease

classification model,including its organization and composition.

The dataset was mounted at the directory /content/drive and extracted to /content/plantvillage-dataset,

ensuring easy access for analysis and processing.

Folder Organization

The dataset is divided into two primary folders:

1. train_val_test: This folder contains three subdirectories: o train: Includes images used for

training the model.

o val: Contains images for validation purposes.

o test: Holds images for evaluating the model's performance.

2. PlantVillage: Comprises subfolders, each named after one of the 15 plant health categories,

representing different diseases and healthy conditions.

File Information

The extracted dataset contains subdirectories for each of the 15 classes within the PlantVillage folder.

Each subdirectory includes images corresponding to specific plant diseases or healthy leaf conditions.

Image Count

Total Images: 16,511 validated images distributed across the 15 classes.

Test Set: 2,062 validated images specifically reserved for model testing.

The dataset's well-organized structure, combined with its balanced distribution of images, ensures an

effective pipeline for training, validating, and testing the plant disease classification model.

XII Data Optimizer

In this project, the Adam optimizer (Adaptive Moment Estimation) was used to train a Convolutional

Neural Network (CNN) for plant disease classification. Optimizers are crucial in deep learning as they

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 12

adjust model parameters to minimize the loss function and enhance accuracy. The choice of optimizer

greatly influences how quickly the model converges, its stability during training, and overall performance.

Why Use the Adam Optimizer?

The Adam optimizer is a combination of two widely used optimization techniques:

• Momentum-Based Gradient Descent: Improves convergence speed by using a moving average of past

gradients.

• RMSProp: Adjusts the learning rate based on the recent magnitude of gradients, making it effective for

sparse gradient scenarios.

Adam is particularly advantageous for deep learning models due to its ability to adapt the learning rate

for individual parameters, ensuring faster and more reliable convergence. How Adam Optimizer Works

The Adam optimizer relies on two main components:

1. Moment Estimates: o First Moment (Mean): Tracks the moving average of gradients.

 o Second Moment (Variance): Tracks the moving average of squared gradients.

2. Bias Correction: Corrects the bias introduced during the initialization of moment estimates to

ensure accurate updates.

The optimization process involves the following steps:

1. Calculate the gradient of the loss function with respect to the model's parameters.

2. Update the biased first and second moments using decay rates β1\beta_1β1 and β2\beta_2β2.

3. Apply bias correction to the moments to achieve unbiased estimates.

4. Update the model parameters using the corrected moments, learning rate (η\etaη), and a small

constant (ϵ\epsilonϵ) to prevent division by zero. Key Hyperparameters in Adam

• Learning Rate (η\etaη): Determines the step size for updating parameters. In this project, a learning rate

of 0.001 was used to balance stability and speed of convergence.

• Beta1 (β1\beta_1β1): Defines the decay rate for the first moment estimates, commonly set to

0.9.

• Beta2 (β2\beta_2β2): Defines the decay rate for the second moment estimates, typically set to

0.999.

• Epsilon (ϵ\epsilonϵ): A small constant, often set to 10−710^{-7}10−7, added to prevent division by zero.

Advantages of Adam Optimizer

• Adaptive Learning Rates: Modifies the learning rate for each parameter based on gradient information,

improving performance for sparse gradients.

• Faster Convergence: Combines the benefits of momentum and RMSProp for efficient optimization.

• Minimal Hyperparameter Tuning: Performs well with default settings across a variety of tasks.

• Effective for Complex Models: Handles large datasets and deep architectures efficiently.

• Robustness: Performs reliably in the presence of noisy gradients or dynamic loss functions.

Comparison with Other Optimizers

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 13

Optimizer Learning

Rate

Strengths Weaknesses

SGD Fixed Simple and widely

used

May converge slowly,

sensitive to tuning

Momentum

SGD

Fixed Faster convergence

than SGD

Requires manual tuning

RMSProp Adaptive Adjusts learning rates

for each weight

Lacks momentum

adjustment

Adam Adaptive Combines momentum

and adaptive rates

Computationally heavier

than SGD

Adam was preferred for this project due to its dynamic learning rate adjustments and superior performance

in tasks involving complex image classification.

The Adam optimizer proved to be an optimal choice for this project, owing to its ability to adapt learning

rates dynamically, achieve fast convergence, and handle noisy gradients effectively. Its robustness and

minimal need for hyperparameter tuning facilitated the successful training of the CNN, resulting in high

classification accuracy for plant disease detection. The optimizer’s efficiency was reflected in the model’s

performance, achieving a test accuracy of 96% while maintaining training stability and efficiency.

XIII Training and Validation Analysis for PlantVillage Dataset

1. Training and Validation Loss (Left Plot)

This graph illustrates the model's performance by tracking the loss over 10 epochs:

• Red Line: Indicates the training loss.

• Green Line: Represents the validation loss.

• Blue Point: Marks the optimal epoch with the lowest validation loss, observed at epoch 10.

Observations:

• Training loss and validation loss both decrease steadily over epochs.

• At epoch 10, the validation loss reaches its lowest point, indicating optimal performance.

2. Accuracy Trends During Training and Validation

This graph illustrates the accuracy progression for the model during training and validation over 10 epochs:

• Red Line: Displays the training accuracy.

• Green Line: Represents the validation accuracy.

• Blue Point: Marks the epoch with the highest validation accuracy, observed at epoch 9. Observations:

• The model shows consistent improvement in both training and validation accuracy.

• Validation accuracy peaks at epoch 9.

• The final validation accuracy reaches close to 100%, showing excellent performance.

Metrics Summary (from Code Logs)

• Final Training Loss: ~4.7747

• Final Training Accuracy: ~91.75%

• Final Validation Loss: ~4.5649

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 14

• Final Validation Accuracy: ~100.00%

XIV Model Architecture Overview

The model employs the EfficientNetB3 architecture as its backbone, leveraging its pre-trained weights on

the ImageNet dataset to act as a powerful feature extractor. EfficientNetB3 outputs feature vectors with a

shape of (None, 1536) and comprises 10,783,535 parameters. To adapt this base model for a 15-class

multi-class classification task, additional custom layers were integratedThe model architecture includes

several key layers optimized for performance:

• A batch normalization layer with 6,144 trainable parameters to stabilize and accelerate the training

process.

• A dense layer with 256 units and 393,472 parameters, enabling deeper feature learning.

• A dropout layer for regularization, reducing the risk of overfitting.

• A final dense layer with 15 units and 3,855 trainable parameters, utilizing a softmax activation function

to predict class probabilities.

The model comprises a total of 11,187,006 parameters, of which 11,096,631 are trainable and 90,375 are

non-trainable. By integrating the efficiency of EfficientNetB3 for feature extraction with customized

layers, the model achieves excellent accuracy while preserving computational efficiency. This design

ensures reliable performance for multi-class classification tasks with minimal resource demands.

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 15

XV Evaluation of the Plant Disease Classification Model

The classification model was assessed using a test dataset comprising 2,065 images distributed across 15

plant disease categories and healthy plant samples. The evaluation yielded the following results:

1. Accuracy

The model achieved an impressive test accuracy of 96%, underscoring its effectiveness in identifying

various plant diseases.

During training, validation accuracy consistently ranged between 92.5% and 97.5%.

2. Loss

Training loss decreased steadily, reaching a value of 4.59, indicating that the model efficiently learned the

distinguishing features of plant diseases.

Validation loss stabilized around 5.12, showing no significant overfitting.

3. Precision, Recall, and F1-Score

The table below summarizes the performance metrics across all 15 classes:

Class Precision Recall F1-Score Support

Pepper bell – Bacterial spot 0.99 0.99 0.99 100

Pepper bell – Healthy 0.99 0.99 0.99 148

Potato – Early blight 0.99 1.00 1.00 100

Potato – Late blight 0.91 1.00 0.95 100

Potato – Healthy 1.00 0.73 0.85 15

Tomato – Bacterial spot 0.98 0.96 0.97 213

Tomato – Early blight 0.99 0.79 0.88 100

Tomato – Late blight 0.97 0.93 0.95 191

Tomato – Leaf mold 0.95 0.98 0.96 95

Tomato – Septoria leaf spot 0.94 0.98 0.96 177

Tomato – Spider mites

(Twospotted)

0.89 1.00 0.94 168

Tomato – Target spot 0.95 0.90 0.93 141

https://www.ijfmr.com/

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 ● Website: www.ijfmr.com ● Email: editor@ijfmr.com

IJFMR250134045 Volume 7, Issue 1, January-February 2025 16

Tomato – Yellow Leaf Curl

Virus

1.00 0.99 0.99 321

Tomato – Mosaic virus 0.95 0.95 0.95 37

Tomato – Healthy 0.96 0.99 0.98 159

The weighted average F1-score across all classes stands at 96%, highlighting the model's reliability.

XVI Discussion

The CNN-based plant disease classification model showcases high efficacy and generalizability. Key

observations include: 1. Class-Wise Performance

High-support classes like Tomato Yellow Leaf Curl Virus and Tomato Bacterial Spot achieved nearperfect

precision and recall scores.

In contrast, underrepresented classes such as Potato Healthy (15 samples) showed reduced recall (0.73),

likely due to limited training data. Employing data augmentation partially mitigated this issue.

2. Misclassification Analysis

Some confusion arose between visually similar diseases, such as Tomato Early Blight and Tomato Late

Blight, due to overlapping visual patterns.

3. Effectiveness of Data Augmentation

Augmenting the training data improved the model's robustness by introducing variability in image

properties like orientation, brightness, and scale.

4. Model Generalization

A test accuracy of 96% indicates the model’s ability to generalize effectively to unseen data.

5. Challenges and Potential Improvements

Class Imbalance: Addressing underrepresented categories by collecting more data or applying advanced

techniques such as Synthetic Minority Oversampling Technique (SMOTE) could enhance performance.

Transfer Learning: Leveraging pre-trained architectures like VGG16 or ResNet may improve accuracy,

particularly for smaller datasets.

Deployment: Integrating the model into mobile or IoT platforms would enable real-time detection of plant

diseases, aiding farmers directly in the field.

XVII Conclusion

The proposed model demonstrates exceptional accuracy and consistency in diagnosing plant diseases,

making it a valuable tool for early detection and crop management. While challenges persist in handling

underrepresented classes, the results affirm the viability of deep learning-based methods for agricultural

applications. This model can be further refined and deployed for practical use, promoting sustainable

farming practices through timely disease detection and management.

https://www.ijfmr.com/

