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Abstract 

Nowadays, the need for a powerful model in the task of accurate image classification is increasing. This 

paper focuses on evaluating and comparing the effectiveness of three main neural network models namely 

the multilayer perceptron model, convolutional neural networks and the transfer learning model for the 

classification of mineral and rock images in the mining region of Katanga. The main problem addressed 

is the identification of the most efficient and accurate machine learning techniques in the specific 

classification of mineral images, with a particular focus on the constitution of the dataset, the analysis of 

mineral image data and their associated labels. Parameters such as the burial lot, the number of cycles, the 

size of convolution filters, the precision and the loss have been taken into account. The results show that 

the transfer learning-based model significantly outperforms the multilayer perceptron models and 

convolutional neural networks in terms of accuracy and robustness, achieving a classification accuracy of 

97.8% compared to 75% for the multilayer perceptron and 96% for the convolutional neural networks 

designed from scratch. These remarkable results demonstrate the importance of deep learning in 

processing complex images and open new perspectives for the use of these techniques in the mining sector 

of the Greater Katanga mining region in the identification of mineral resources. The broader implications 

of this study include an innovation in mining exploration strategies through faster and more accurate 

classification of minerals, thus influencing both economic decision-making and environmental policies 

associated with mining in the region. 

 

Keywords: Performance evaluation, Transfer learning, Deep learning, Convolutional neural networks, 

Mineral image classification. 

 

Introduction 

Every day that passes, huge masses of images are taken, whether they are images of the different minerals 

extracted or of new strategic minerals discovered, images of boreholes, images of the mapping of mineral 

reserves, high-risk mining areas, details of machines in exploration sites, information relating to the 

labeling of minerals, images on compliance and the fight against illegal trafficking of minerals. In addition, 

the mining area of Katanga is full of varied mineral resources, which poses particular challenges due to 

the complexity and diversity of textures, mineral compositions for their elucidation and precise 

classification. Furthermore, the rapid evolution of image processing technologies, especially those based 

on machine learning, has revolutionized the way geological and mineral information is analyzed and 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250135127 Volume 7, Issue 1, January-February 2025 2 

 

interpreted. At the heart of this transformation, image classification techniques play a crucial role for 

mineral identification and evaluation, particularly in the context of the Katanga mining region, known for 

its mineral wealth. However, despite the significant advances in neural networks, there remains a gap in 

the comparative evaluation of models such as Multilayer Perceptron (MLP), Convolutional Neural 

Network from scratch (CNN) and the use of transfer learning of the VGG-16 architecture specifically 

applied to mineral image classification.  This finding highlights a key research problem, namely: which 

neural network model is the most effective for classifying mineral images in this region rich in mineral 

resources? The objectives of this study are threefold: first, to analyze the respective performances of MLP, 

CNN and Fine-Tuning with VGG-16 models in the context of mineral image classification; second, to 

identify the strengths and weaknesses of each model in terms of accuracy and robustness; and finally, to 

propose recommendations for optimizing classification processes in future applications. Particular 

emphasis will be placed on the importance of collecting and analyzing mineral image data, which 

constitute the keystone on which model performance evaluations are based. The importance of this 

research lies in its ability to fill gaps in the existing literature regarding the application of machine learning 

techniques in classification, particularly in complex geological contexts. From a practical perspective, a 

better understanding of the performance of different models can lead to more effective solutions for the 

management and exploitation of mineral resources, thus contributing to sustainable development practices. 

Accurate classification of minerals can really make a difference in mining efficiency, production 

traceability and environmental sustainability. Furthermore, this study aims to strengthen the analytical 

capacity of deep learning systems by generating useful and applicable knowledge for responsible and 

efficient mining in the Katanga region, while making a significant contribution to the evolution of mineral 

image classification methods in the field of machine learning (Carpenter, 2020) (He et al., 2023) 

(Jayasinghe et al., 2023) (Abadade et al., 2023) (Chae et al., 2023). 

To evaluate the Multilayer Perceptron (MLP) model, convolutional neural networks designed from scratch 

(CNNs) and the VGG16 architecture in mineral imaging, this study is articulated into key sections for 

clear analysis. First, the introduction shows why mineral imaging is important and how deep learning 

plays a role here. Next, the state of the art recounts current research on the performance of each model and 

their details, setting the scene for comparison. Next, the methodology section reviews the experimental 

setup, covering data collection, pre-processing methods and model training. In the results section, the 

results are shared with a detailed analysis that highlights the strengths and weaknesses of each model. 

Finally, the conclusion summarises the knowledge gained and discusses possible directions for future 

research. 

 

1. Related works 

The rapid evolution of machine learning techniques has significantly transformed the mining industry in 

general, and the field of mineral imaging in particular, by enabling more accurate and efficient analysis of 

geological data. In this context, the mining region of the Greater Katanga area, renowned for its wealth of 

mineral resources, is a particularly relevant field of study. Indeed, image classification methods have a 

direct impact on resource exploration and exploitation, influencing both economic results and sustainable 

development. In this section, we aim to synthesize existing research on the performance evaluation of 

MLP, CNN and transfer learning-based models of the VGG-16 architecture in the specific context of 

mineral imagery in the Katanga region.  Drawing on previous studies, this analysis will highlight the 

strengths and limitations of each approach, while identifying the gaps that currently remain. 
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To this end, it will aim to establish a solid foundation for the future development of image classification 

tools adapted to mining contexts, thus contributing to the advancement of research and practice in this 

sector vital to the national economy.  For his part, Julien Maitre achieved an impressive performance with 

around 90% accuracy in the process of extracting super pixel color patterns from 3192 images obtained 

using an optical microscope (Maitre et al., 2019). The classification of the ore grains was carried out using 

several machine learning algorithms including classification and regression trees, k-Nearest Neighbors 

and random forests.  For his part, Naseri classified thin-slice mineral images with a class count of 42 

minerals in a dataset of 900 microscope images (Naseri & Rezaei Nasab, 2023) ”. He used the Support 

Vector Machine algorithm to extract color and texture features from an image, then applied classification, 

and the accuracy obtained was a sharp 99.25% in mineral segmentation. Nevertheless, the manual 

engineering used by these algorithms remains a major obstacle and challenge for the extraction of more 

complex patterns or the scaling-up of large datasets. There has been growing interest in evaluating the 

performance of neural network models for image classification in the Katanga mining region, not least 

because of the specific characteristics and challenges posed by this type of imagery. In this context, 

multilayer perceptron neural networks (MLPs), convolutional neural networks (CNNs) and in particular 

the VGG-16 model are frequently used for classification.  Studies have shown that Machine Learning 

(ML) models based on CNNs, due to their ability to capture spatial features and complex patterns in 

images, often outperform traditional MLP models in similar applications (Carpenter, 2020) (Gayap & 

Akhloufi, 2024).  For example, the work of (He et al., 2023) demonstrates that CNNs applied to medical 

imaging data reveal significantly better performance in terms of precision and recall, due to their adaptive 

architecture. Neural network models, such as multi-layer perceptrons (MLPs), convolutional neural 

networks (CNNs), and transfer learning with advanced architectures such as VGG-16, have been at the 

center of concerns relating to image classification. More than two decades ago, early research focused 

mainly on approaches using regression models and basic statistical techniques, which quickly revealed 

their limitations in terms of accuracy and generalizability (Carpenter, 2020). However, the rise of machine 

learning marked a turning point, allowing the introduction of multilayer perceptron (MLP) models which, 

while effective, remained limited in their ability to capture complex structures in the data (Gayap & 

Akhloufi, 2024). As a result of technological developments, convolutional neural networks (CNNs) have 

been adopted, overcoming the limitations of MLPs and offering significant performance improvements 

thanks to their ability to self-extract features from images with one, two or three dimensions (He et al., 

2023). Research in a variety of contexts has demonstrated that CNNs outperform traditional MLPs in 

imaging and object detection applications, particularly for complex image classification (Jayasinghe et al., 

2023).  More recently, the VGG-16 model has burst onto the scene and moved the line for its depth and 

ability to capture fine details in image data (Abadade et al., 2023). Studies have shown that VGG-16, with 

its 16 layers of depth, offers remarkable performance in classification tasks, achieving almost unrivalled 

accuracy rates in image classification (Chae et al., 2023).  For models using the VGG-16 architecture, 

several research studies testify that it is an excellent choice for mineral image classification, particularly 

thanks to its deep layers that enable the extraction of complex, high-dimensional features (Jayasinghe et 

al., 2023) (Abadade et al., 2023).  The performance of VGG-16 has been particularly noted in medical 

imaging case studies, where it has shown increased robustness to variance in image conditions (Chae et 

al., 2023) (Orouji et al., 2023). However, some researchers point to the challenges of high clamp costs and 

training data requirements. However, the VGG-16 model stands out for its use of a deep architecture and 
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dense classification layer, showing promising performance compared to more conventional models such 

as MLPs (Abadade et al., 2023), (Chae et al., 2023). 

Furthermore, recent research has highlighted the relevance of image pre-processing, such as normalization 

and data augmentation, to further improve model performance (Orouji et al., 2023). As demonstrated by 

recent research on mineral identification, peak performance of the order of 98% has been achieved by a 

binary pattern applied to four mineral types (Aligholi et al., 2015), and this with a normalized dataset.  

However, the constitution of the dataset can become a curse hindering the capture of complex patterns 

present in various mineral samples. In the context of atypical mineral imagery extracted under diverse 

light conditions, approaches based on classification combinations appear promising, combining the 

strengths of different model types to maximize classification accuracy. Thus, the variety of methodologies 

employed to assess the performance of classification models illustrates the need for an adaptive approach, 

taking into account the specificities of Katanga's mineral data and specific research objectives. The 

classification of mineral imagery, particularly in complex environments such as the Katanga mining 

region, requires in-depth evaluation of machine learning models such as multilayer perceptrons (MLPs), 

convolutional neural networks (CNNs) and the VGG-16 architecture. Each model offers distinct 

theoretical perspectives that highlight different learning mechanisms.  The performance evaluation carried 

out by EL BADAOUI between two network models MLP and RBF indicates that the weight vector plays 

a catalytic role when aiming for the right performance (EL BADAOUI et al., 2014).  To this end, CNNs 

are reputed to be efficient in computer vision, achieving over 99% accuracy on handwritten digits 

(MNIST) (LeCun et al., 1998).  Research results by Golik and his team confirm that MLP can rival CNNs 

with more layers, for example: 12 fully connected layers versus 6 (1 convolution layer and 5 fully 

connected) for a CNN (Golik et al., 2015).  One study showed that, using filter banks, CNNs are sharp in 

terms of learning rate (0.007) with a regularization coefficient of 0.9, whereas MLP requires a derivative 

of filter banks with a shallow architecture every time (Manenti et al., 2016). CNN's strength lies in the 

first layers, which alone approximately realize the derivative of temporal fields.  Moreover, MLP remains 

sensitive to the number of layers and the number of neurons. Manenti and his team obtained a 1% gain in 

F-measurement from an MLP with a maximum number of neurons of 300, compared to another model 

with 50 neurons.   However, the CNN was proven to be optimal with a number of neurons between 50 and 

400 in the dense layer, all the more so as the number and size of convolution filters has a huge influence 

on its performance, of the order of 1% to 2%, in absolute terms.  With a number of filters between 15 and 

120, CNNs can gain up to 1.2%.   The bulk of the work therefore lies in optimizing the neural network 

parameters - number of layers, number of neurons, convolution filters - to obtain the best possible result. 

Thus, evaluating the performance of MLPs, as well as more complex models such as CNNs, is crucial to 

finding the best strategies for identifying and managing mineral resources. MLPs, while effective for 

conventional datasets, may suffer from generalization limitations when faced with complex images 

(Carpenter, 2020). In contrast, CNNs, which exploit convolutions to extract hierarchical features, 

demonstrate a superior ability to process image data taking into account the spatial location of pixels, 

making them particularly suitable for mineral image classification (Gayap & Akhloufi, 2024) (He et al., 

2023). On the other hand, the VGG-16 architecture, with its increased depth, further improves 

performance by enabling finer feature extraction, although it is more computationally intensive 

(Jayasinghe et al., 2023).  In this respect, some researchers emphasize the importance of a hybrid approach 

that combines these models to take advantage of their respective strengths (Abadade et al., 2023) (Chae et 

al., 2023). In the context of mineral imaging, the ability of CNNs and VGG-16 to handle complex color 
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and texture variations is particularly relevant, as indicated by several studies demonstrating their superior 

performance over traditional MLPs in experimental tests (Orouji et al., 2023). 

It is therefore essential to evaluate these approaches through a robust theoretical framework to determine 

the most suitable model for classifying the specific data from the Katanga region, taking into account the 

constraints and opportunities offered by each technique. This highlights the interaction between theory 

and practice in the optimization of machine learning processes for mineral and environmental applications. 

Analysis of the performance of image classification models, such as multilayer perceptrons (MLPs), 

convolutional neural networks (CNNs), and the VGG-16 model, has revealed significant prospects for the 

exploitation of mineral imagery in the Katanga region, raising crucial issues for the mining industry. There 

is a plethora of studies comparing these different approaches in terms of accuracy, speed and ease of 

adaptation to the specifics of mineral datasets.  However, the application of these models to specific data 

such as mineral imagery remains little explored, a gap that deserves particular attention.  At the same time, 

the challenges associated with data acquisition in the Greater Katanga mining area, such as difficult access 

to mining sites, variable image quality and lighting conditions, are crucial factors influencing model 

performance. Few past studies have focused on the impact of these variables when evaluating the 

performance of classification algorithms, which raises the question of how to generalize models beyond 

lighting conditions, laboratories and actual sites. Hence the need for further work to adapt these models to 

the particularities of mineral data in the Greater Katanga area, and to optimize their effectiveness in real-

life scenarios. Furthermore, understanding of the mechanisms underlying the uneven performance 

between these different models remains incomplete, calling for further exploration of the factors that 

determine their success in this field. In summary, the work explored in this review highlights the real 

potential that machine learning models represent for the classification of mineral imagery in Katanga, 

while opening up promising avenues of research. The future of this discipline will undoubtedly be 

influenced by the ongoing evolution of available technological tools and their implementation in 

exploration and mining practices. 

 

2. Methodology 

Notwithstanding the multiple important stages of a Machine Learning model, data collection and 

processing remain the cornerstone of any Data science project. Kilkenny and Robinson point out that the 

quality of input data directly influences output results (Kilkenny & Robinson, 2018).  To this end, we start 

with a data collection strategy and the creation of a dataset. Thus, the dataset used in this article was 

obtained by the strategy of taking images of mineral samples from the Museum of Geology / UNILU using 

a digital camera. The criteria of variability and volume of usable images being imposing, we completed 

our dataset with mineral images stored in the Minda site. From the sample of images collected, we perform 

geometric and spatial transformations to increase the size and diversity of the training set.  Among the 

modules integrated into the Keras library, we can use the ImageDataGenerator module, which allows us 

to perform manipulations and augmentations on images in real time. Among these manipulations, we use 

resizing by dividing the image values by 255 in order to restrict them to the [0, 1] field, as well as horizontal 

flipping. Next, the dataset is organized into the classes used in this article, namely Chalcopyrite, Cobalt-

calcite, native copper, Katangite and Malachite, as illustrated in Figure 2.  Following the organization of 

the categorized images, we built and trained our three resource classification and identification models 

“Kumadi: Kumbulibua kua madi” literally the discovery of wealth, namely: “Kumadi_mlp”, 

“kumadi_cnn” and “kumadi_vgg16”. Finally, the model was predicted and tested.  The following Figure 
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1 illustrates the methodological approach used in this article, applying deep learning to the classification 

of mineral rock images in the Greater Katanga area. 

 

Figure 1—Démarche méthodologique 

 
Figure 2——Image of the KATANGITE rock of TANTARA, NSESA, Shangulowé (Kambove) 

 
As far as the breakdown of the dataset is concerned, we grouped the images into 5 classes based on the 

minerals in the target rocks, namely chalcopyrite, cobalto-calcite, native copper, katangite and malachite. 

Once the images had been grouped by class, we had to build a database to carry out the various learning 

stages. To do this, we set up our files according to the organization shown in Figure 3: 

 

Figure 3—Organisation du jeu de données « Kumadi_5 » 
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To improve classification accuracy, images of each mineral rock type were randomly distributed within 

each sub-class as follows: 80% for training and 20% for validation.   The exact distribution of data by 

category and type is described in the following Table 1. 

 

Table 1—Number of images in the dataset 

 Train Validation Test 

CHALCOPYRITE 1920 480 10 

COBALTOCALCITE 1920 480 10 

CUIVRE NATIF 1920 480 10 

KATANGITE 1920 480 10 

MALACHITE 1920 480 10 

 

2.1.Training and model validation 

Following the structuring of the image dataset into training and test data, a labeling task was carried out 

to define labels for each of our five mineral types in the Greater Katanga area. In addition, the challenge 

of RGB (Red Green Blue) image size was resolved by reducing the number of images processed in batches 

of 64 at a time. On the other hand, the number of times the learning algorithm is reproduced on the dataset 

(epoch) is fixed at 30.  However, iterations can be interrupted (dropout) in the event of overfitting or if no 

performance improvement is observed. At the end of the epochs, the training model is saved with the best 

result obtained.  We build a first Model “kumadi_mlp” for the classification of rock mineral images from 

the Greater Katanga area.  The MLP model is trained from scratch with the classic architecture consisting 

of an input or flattening layer whose role is to take each 200 x 200 x 3 image from our Kumadi-5 dataset 

and apply one-dimensional vectorization; a fully connected hidden layer consisting of 128 neurons with 

the ReLU activation function; and an output layer consisting of 5 neurons (Kumadi-5 classes) and a 

softmax activation function. The training of the second model “kumadi_cnn” is carried out from scratch; 

thus, the architecture of the mineral rock image classification model of the Greater Katanga area is 

composed of the following layers and components: The input layer consists of a Conv2D with 32 filters 

and a ReLu activation function. The “Kumadi-cnn” model is divided into 3 convolution blocks with filters 

of increasing size and a ReLu activation function. In addition, each convolution block has a max-pooling 

layer of 2 pixels and a dropout (0.2% of neurons). Fully connected layers contain a flatten layer.  The 

output layer is a Dense layer with 5 units and softmax activation. Compiling a CNN model requires 3 

parameters: Optimize, Loss function and Metrics. To minimize the cost function, various methods are 

indicated, in this case gradient descent with a default optimizer which is Adam. With regard to the loss 

function for model improvement, we have a choice between minimizing loss and maximizing accuracy. 

In order not to deviate from the rule of minimizing loss with neural networks, we have sacrificed accuracy 

in favor of loss. To examine this loss, it is necessary to use different formulas such as 

“categorical_crossentropy” or “binary_crossentropy”. In our case, we use categorical_crossentropy for the 

simple reason that we're doing a multi-class classification. Finally, for the third model, “kumadi_vgg16”, 

we use partial FineTuning to apply certain adjustments to the few parameters of certain layers in order to 

perform classification on a new data set. In this way, the first layers are spared (frozen) from fine-tuning, 

in order to retain the old functionalities learned on the initial dataset. 
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3. Results and discussions 

This study focuses on the classification of rock mineral images by building the KUMADI-5 database. The 

Kumadi-5 database contains 12,000 color images (341 x 380 pixels) divided into 5 classes, with 2,400 

images per class. The classes include rock minerals mined in the Greater Katanga area, such as native 

coppers, Katangites, Malachites, Cobalto-Calcites and Chalcopyrites. The distribution of classes in our 

training dataset is shown in Figure 4 below: 

 

Figure 4—Distribution of classes in the training dataset 

 
A sample image from the Kumadi-5 dataset is illustrated in Figure 5: 

 

Figure 5—sample images labeled by the model 

 
 

3.1.Results with the “kumadi_mlp” model 

The compilation is subject to the choice of certain parameters capable of defining its performance. For 

this reason, the “categorical cross-entropy” loss function was chosen for multiclass classification and the 

“adam” optimizer was used for parameter updating. Finally, the accuracy metric “accuracy” is shown for 

model accuracies.  A summary of the model is shown in the following Figure 6 for information on layers 

and parameters. Evaluation of the MLP model is carried out on test data, and the performance obtained is 

summarized as 75% accuracy and 0.8427 loss. 
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Figure 6—learning curves (loss and precision) with “kumadi_mlp” 

 
Experimental testing of the MLP model with 192 images from the test set, 144 correct classifications and 

48 incorrect classifications. 

 

Figure 7—MLP Model Classification Report 

 

Figure 8—Normalized confusion matrix of the kumadi_mlp model 

 
3.2.Result of the model “kumadi_cnn” from scratch 

The evaluation revealed model accuracy for training data is: 0.96.88%; model loss for training data is: 

0.239%; model accuracy for validation data is: 0.96.88% and model loss for validation data is: 0.239%. 
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Figure 9—Évaluation de la précision et perte du modèle « kumadi_cnn » 

 
Prediction using the Kumadi_cnn model yielded the following results: Model accuracy for test data: 

98.88%; Model loss for test data: 0.018%; Correct predicted classes: 186 and Incorrect predicted classes: 

6 

Figure 10—Ranking report of model “kumadi_cnn” 

 

Figure 11—Confusion Matrix of our model “kumadi_cnn” 

 

 
 

3.3.Result with Transfer Learning with VGG16 

The model was trained for 30 cycles (epochs) with a batch_size of 64 images and revealed 95% accuracy 

in just 10 epochs. The result is shown in the following figure 13. 
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Figure 12—Evaluation of the Kumadi Transfer Model 

 
The ranking score gave 188 correct rankings, 4 incorrect. The confusion matrix is shown below: 

 

Figure 13—Classification results with VGG16 

 

 

Figure 14—Confusion matrix of the kuma_transfer model 

 
 

Table 2 summarizes the performance of our three models: 

Table 2-Comparative table of model performance 

Epoch 10 30 

 Val. Acc Train acc loss Val. Acc Train acc Val. loss 
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kumadi_mlp model 0.72% 0.72% 0.74% 0.75% 0.85% 0.8429 

kumadi_cnn from 

scratch model 

0.93.5% 0.98% 0.23% 0.96.8% 0.99% 0.2398 

kumadi_vgg16 model 0.97% 0.98% 0.3856 0.97.89 098 0.055 

 

Discussion 

The comparison of multilayer perceptron (MLP), convolutional neural networks (CNN) and transfer 

learning with VGG-16 revealed important information about their abilities to classify mineral images from 

Greater Katanga. The “kumadi_mlp” model could handle basic classification, but had difficulty with 

complex features. This led to an accuracy rate 0.75% lower than that of deeper models in terms of layers. 

In addition, the “kumadi_cnn” model was effective at spotting detailed patterns in mineral images with an 

accuracy of 096%, however it requires a large and varied image mass and a lot of resources and training 

time. Its performance improved greatly thanks to its transfer learning approach with VGG-16 

“kumadi_transfer”, which features many deep convolutional layers and has been trained on large datasets, 

achieved the highest accuracy of around 0.98% compared to the other two models tested. This proves just 

how well it handles subtle visual data.   Overall, the results highlight the need for advanced neural network 

architectures, in particular VGG-16, in tasks that require accurate classification of high-dimensional 

images, improving mineral identification in geological research.  When selecting the best model to classify 

images, it is essential to consider the architecture, model parameters, performance metrics and unique 

characteristics of the dataset. Analysis of multi-layer perceptron (MLP) models, convolutional neural 

networks (CNN) and VGG16 transfer learning shows the importance of considering accuracy, loss 

minimization and resilience and computational efficiency. Nevertheless, if the dataset is small or 

computational power is limited, MLPs can be a practical option without losing much accuracy. Ultimately, 

model selection must involve verification of performance measures such as precision and recall, as well 

as cross-validation. This will ensure that the selected model achieves the right balance between complexity 

and predictive capability. 

An example of the output generated by the system after image capture is shown in the following figures. 

 

Figure 16—Exemples d'images de sortie : roches minérales 
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Conclusion 

In this article, we have evaluated the performance of three neural network architectures for the 

classification of mineral images of rocks in the Greater Katanga area. First, we built a model based on the 

Multilayer Perceptron “kumadi_mlp”; then, a model with a CNN architecture “kumadi_cnn” was built 

from scratch; and finally, we used transfer learning of the VGG-16 model to compare performance on 

image classification. The results show that the transfer learning-based model of the VGG-16 architecture 

outperforms the MLP and CNN models in terms of accuracy and robustness, achieving a classification 

accuracy of around 98% versus 75% for the MLP and 96% for the CNN from scratch. These results 

underline the importance of deep learning in the processing of complex images, and open up new prospects 

for the use of these techniques in the monitoring and analysis of mineral resources. Indeed, the use of 

multi-layer perceptron models, convolutional from scratch neural networks or transfer learning with VGG-

16 has had a considerable impact on mineral classification, particularly in the mining regions of the greater 
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Katanga area. The successful use of these models could lead to further research. This could encourage the 

study of combined methods that combine machine learning with traditional geology. Ultimately, progress 

with these models shows that they play a crucial role in helping to make intelligent choices about mineral 

exploration and resource management, which is important for both academia and industry. The field of 

mineral classification is in a state of flux. Future research should aim to improve the accuracy and speed 

of classification models. This includes multi-layer perceptron (MLP) and convolutional neural networks 

(CNN), with an emphasis on advanced transfer learning designs such as VGG-16. 
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