

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Bullwhip Effect Can Be Mitigated by Using Data Base Management System

Komal Preet Kaur

Professor, Metis degree college

Abstract

Purpose: The risk of uncertainty in demand or spurious demand will lead to generation of bullwhip effect. In this research paper biasness of information and actual order of stock will be investigated through the employment of computerized system.

Design: This study is conducted to address the gap systematic literature review of 40 articles is concluded from the year 2017 to 2024. The source of article is web of science and Scopus, using PRISMA protocol with the help of TCCM framework.

Finding: The result under this research is information is amplified while reaching from end consumer to manufacture the main cause find in various studies is lead time. The factors related to the bullwhip effect also found in it.

Original value: Under this research provide insight to manufactures, suppliers, investors, managers in the replenishment policy making and also efficient utilization of resources. Mainly significance of this research to provide insight to the new startups how to maintain inventory.

Keywords: Supply Chain, Entrepreneurs, Database.

Introduction

Numerous actions should be undertaken for the purpose for the best possible supply chain performance. However, those choices occasionally conflict with the goals of all those involved in the same supply chain (Cannella, S., Dominguez, R., Ponte, B., & Framinan, J. M. (2018). The main objective of supply chain stakeholders consists of achieving their own aims, but this self-serving focus can result inadequate execution.

According to the Schisgall, O. (1981) the proctor and gamble is the first company who describe about the bullwhip effect. It is based on the traditional method of capacity restrictions (Cannella, S., Dominguez, R., Ponte, B., & Framinan, J. M. (2018). The most of the researches has shown the bullwhip effect from the distorted information they received from the retailers, wholesalers, change in fashion, product life cycle differently(Cannella et al., 2018);(Cuong et al., 2023); (Ponte et al., 2021); (Dominguez et al., 2020). But the problem is that all the components should be analysed using the data base management system simultaneously.

To fill this gap, the study provides comprehensive view of the variables influencing the production level which is being related to the bullwhip effect using the systematic literature review methodology. This study seeks to achieve the following objectives: (1) systematically review the existing literature review of the of bullwhip effect on the inventory cost, production level and customer satisfaction, (2) to identify, analysed and summarize the variables of the bullwhip effect. The PRISMA protocol with the help of

TCCM framework. The main focus of this study is to provide insight to industry that how to reduce the bullwhip effect for new entrepreneurs

The article has division of eight sections: (1) the first section is introduction, (2) this section presents the existing research on bullwhip effect, (3) the PRISMA protocol used in the methodology section,(4) the result section, TCCM framework (5) the discussion section analysed the variables and findings.(6) in this section research gap and limitations are reviewed which will be developed in future recommendations,(7) the practical implications,(8) this section highlight the conclusion and importance of findings in systematic literature review.

Theoretical background

Bullwhip effect

The effect of variance information travelled from lowest of the chain to top most level is the bullwhip effect (Forrester, J. W. (1958). Although the information is not accurate or not received on time which create trouble for the manufacturer (Forrester, J. W. (1958). Due to bullwhip effect mentioned conditions will occur firstly talk about the storage cost due to excessive information of demand, secondly the manufacturing cost due to production of goods raw material required, labour cost and lastly the transportation cost for the replenishment of stock (Beer, A. (2014); (Chopra, S., & Meindl, P. (2007). The mitigation of bullwhip effect will also have positive effect as it will reduce the investment and inventory cost (Chopra, S., & Meindl, P. (2007).

Data base management system

This allowed to measure, gather, record, confirm, arrange, preserve, combine update, collect, and defend data(Mapanga & Kadebu, 2013).earlier the data base management system used is flat file database but it has some limitations that are no structured relation, no security and data is in simple binary formation (Mapanga & Kadebu, 2013). Now the need that to develop new database which remove all these drawbacks then the era come of SQL database (structured query language) with the passage of time it was not able to handle the modern workload because of rigid schema system (Mapanga & Kadebu, 2013). Now the system used are NO SQL database management system which provide flexibility to the entrepreneurs (Mapanga & Kadebu, 2013).

Review approach and structure

The study carries out a thorough literature assessment that identifies research gaps, offers prospective research directions, and provides a current grasp of the underlying research stream. The study uses sequential methods to conduct a systematic literature review and organize the topic of bullwhip effect minimization using advanced computerized tools. The Prisma Protocol is addressed in the first stage (Moher et al.,2009), and the TCCM framework was used in this study in the second (Paul & Benito.,2018). Using it the figure 1 describes the following stages. At the introduction stage: the source of relevant database is web of science and Scopus and the impact factor is greater than 1 and some journal has impact factor 12, the journal reviewed in this related to the bullwhip effect on the supply chain. The study articles that were taken from Scopus and the Web of Science are 238 and 477 respectively after the exclusion because of automation tool and other reason, remaining journals are 207

The screening stage: this stage records excluded 158 due to irrelevant topic. When sought for retrieval records were 49, because of not availability of full text the records left for eligibility are 36.

The inclusion stage after all of the screening records finally we have 36.

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

Inclusion criteria

The research paper searched from the combination of "bullwhip effect" and "supply chain". The year considered for selection is 2017 to 2024 and the language preferred is English. The disciplines included are supply chain management and business management.

Factors of bullwhip effect

- 1. **Co-ordination risk:** There is lack of trust on the information provided by the suppliers and customers in that case they drop their decision and make their own choice of production (croson, R., et al (2014).
- 2. Cognitive restrictions: Participants do not believe the other behaviour and does not change according to the market situation. this situation will exaggerate the bullwhip effect (croson, R., Donohue, K., Katok, E., & Sterman, J. (2014).
- **3.** Oscillation: When there is a gap between the order arrived and (backlogs Sterman, J. D. (1989); (Croson, R., & Donohue, K. (2006).
- **4. Present order:** The bullwhip effect come in force when the demand is stable and ordering policy is efficient but still making variations in the stock level of the products. The participants thought the supply line is underweight so kept up pilling the stock (Croson, R., & Donohue, K. (2006); (Kovacevic, I., Panic, B., Vujosevic, M., & Kuzmanovic, M. (2013).
- **5. Personality attributes:** The personality traits like risk taker, risk averse or risk neutral, clarity or confusion of the market situation, efficient and have locus of control all this effect decision which will further contribute to bullwhip effect (Ruël, G., van Donk, D. P., & van der Vaart, T. (2006).

s.n			author		
0.	article title	Journal	citation	context	theoretical
	The implications of				
	batching in the bullwhip				
	effect and customer service				
	of closed-loop supply	INT J PROD	Ponte, B et	Customer	Mathematical
1	chains	ECON	al.	service	model
	Capacity restrictions and				
	supply chain performance:		Cannella,		Time queuing
	Modelling and analysing	COMPUT IND	Salvatore et	Customer	model, little
2	load-dependent lead times	ENG	al.	satisfaction	law
	Modelling and optimizing				
	of variance amplification in				
	supply chain using		Shaban,		
	response surface	INT J PROD	Ahmed et	Inventory	Forecasting,
3	methodology	ECON	al.	management	simulation
	When bullwhip increases				Mental model,
	in the lead time: An				tyekins
	eigenvalue analysis of	INT J PROD	Gaalman,		squared
4	ARMA demand	ECON	Gerard et al.	Companies	impulse
	Modelling the operation of		Lopez-		
	synchronized supply		Campos,		
	chains under a	ACAD-REV	Monica et	Partners and	
5	collaborative structure	LATINOAM AD	al.	customers	***
	Quality grading of returns				
	and the dynamics of	INT J PROD	Ponte,		Pout model,
6	remanufacturing	ECON	Borja et al.	Manufacturer	control

Table 1 This table show the author citation, title, theoretical approach, context and journal.

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

					theoretic model
7	The Impact of Cooperativeness Supply Chain Performances	INT J ENG EDUC	Panic, Biljana et al.	Management	Transaction cost theory and the resource- based view theory
8	Analysis of Variance Amplification and Service Level in a Supply Chain with Correlated Demand	SUSTAINABILI TY-BASEL	Shaban, Ahmed et al.	Cost reduction	Control theory modelling
9	Decisionsupportsystemformaagingmulti-echelonsupplychainnetworksagainstdisruptionsusingadaptivefractionalordercontrolalgorithm	RAIRO-OPER RES	Cuong, Truong Ngoc et al.	Manufacturers , retailers, Distributors, and end customers	**
	Bullwhip severity in		Alvarado-		
10	conditions of uncertainty: regional vs global supply chain strategies	INT J EMERG MARK	Vargas, Marcelo J et al.	Firm, supplier	Internationatio nal theory
11	The implications of COVID-19: Bullwhip and ripple effects in global supply chains	INT J PROD ECON	Scarping, Marcia Regina Santiago et al.	Investors and manufacturing firm	САРМ
12	On the dynamics of closed- loop supply chains under remanufacturing lead time variability	OMEGA-INT J MANAGE S	Dominguez, R et al.	Innovative recommendati ons for companies	
13	Holistic versus analytic thinking orientation and its relationship to the bullwhip effect	SYST DYNAM REV	Branch, M; Grosser, A	Wholesaler, retailer	Theory of holistic thinking
14	RobustControlofBullwhip Effect for SupplyChain System with Time-Varying Delay on Basis ofDiscrete-Time Approach	IEEE ACCESS	Chen, D et	Customers stream retailer and distributors	***
15	Two-stage supply chain inventory management	ANN OPER RES	Zhou, YL et al.	Management	SD THEORY

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

	based on system dynamics				
	hullwhin effect of sulphur				
	product				
	An Interaction				
	Investigation of the				
	Contributing Factors of the				
	Bullwhip Effect Using a			Manufactures,	
	Bi-Level Social Network	J THEOR APPL	Zhou, HT et	retailers,	Bi-modal
16	Analysis Approach	EL COMM	al.	wholesaler	theory
	An improved forecasting				
	approach to reduce				Retailer use
	inventory levels in				SMA method,
1 -	decentralized supply		Tliche, Y et		newton
17	chains	IEEE ACCESS	al.	Manufactures	method
	Sensitivity analysis of the	INT I OVOT OCI	Whieve CA		Discrete
10	bullwhip effect in supply	INT J ST ST SCI-	Kniavi, SA	Droducers	mathematical
10		OFER	et al.	provide	model
				managers with	
	Decision Bias and			useful new	
	Bullwhip Effect in Mult			ideas for	
	echelon Supply Chains:	IEEE T ENG	Pournader,	improving	Ordering
19	Risk Preference Models	MANAGE	M et al.	performance.	policy
	System Performance			_	
	Implications of Capacity				
	and Flexibility Constraints				
	on Bullwhip Effect in		Narayanan,		
20	Supply Chains	DECISION SCI	A et al.		
	Two-part tariffs, inventory			Production,	Game
	stockpiling, and the	EUR J OPER	Qu, Z; Raff,	manufacturing	theoretic
21	bullwhip effect	RES	Н	transportation	approach
	Analysing the behaviour of				
	the bullwhip effect		Valiera M	Manufacturer;	
\mathbf{r}	distribution systems	APPL MATH	Kadivar, M	distributers,	
LL	The impact of domand	MODEL	et al.	suppliers	ARMA
	narameter uncertainty on	FUR I OPER	Pastore Fet	Firm	
23	the bullwhip effect	RES	al	manufacturer	ARMA
	Incorporating demand			munuruoturoi	
	orders, lead time, and		Gamasaee.		
24	pricing decisions for	SCI IRAN	R et al.		Game theory

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	reducing bullwhip effect in supply chains				
	How to measure bullwhin				
	effect by network data	COMPLIT IND	Goodarzi		WPF-DFA
25	envelopment analysis?	FNG	M et al	Manufacturer	network
	Quantifying the Bullwhin		ivi et ui.		network
	Effect in closed-loop				
	supply chains. The				
	interplay of information				
	transparencies, return rates.	INT J PROD	Ponte. B et		
26	and lead times	ECON	al.	Ecosystem	Four archetype
_	The bullwhip effect in rule-				
	based supply chain				
	planning system-a case-				
	based simulation at hard	Omega (United	Nguyen	Supply chain	Optimization
27	good retailer	Kingdom)	D.T et al.	players	model
		International			
	Regulating the bullwhip	journal of		Suppliers,	
	effect in supply chain	industrial		manufacturers,	
	hybrid recycling channels	engineering and		distributors,	
	using linear quadratic	production	"Khiavi S.A	and retailers,	Discrete time
28	gaussian controller	research	et al.	w	state
	Preceding the impact of				
	operational and financial				
	variables on bullwhip	Journal of global			
	effect using threshold	operations and	Gupta S at		Regression
29	regression	strategic sourcing	al.	Manufacturer	model
		International			
	Supply chain cash flow	journal of		Firm, industry	
	bullwhip effect: an	production		government	Analytical
30	empirical investigation	economics	Patil C et al.	policy	space model
	The moderating role of				
	vendor managed inventory				
	on the bullwhip effect in	Cogent business	"Mukucha		
31	covid 19	and management	P et al.	Vendor	Bonferroni
	Can non audit services				
	from shared auditors in				
	supply chain mitigate the				F
	impact of the bullwhip	Management		keduce	Fuzzy
20	effect on investment	accounting	Chen J. et	bullwnip	perceptual
32	erriciency	research	al.	effect	mapping

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> •

• Email: editor@ijfmr.com

	Reducing the bullwhip effect in supply chain with	International journal of			
	factors affecting the	services			Fuzzy
	customer demand	operations and	"Rezaeefard	Manufacturing	consignment
33	forecasting	informatics	M. at al.	firm, supplier	model
	The bullwhip effect,	Contemporary			Control
	demand uncertainty and	accounting	"Chen C.X	Buyer and	theoretical
34	cost structure	research	et al.	seller	modelling
		International			
		journal of			
	Meta prediction models for	information			
	bullwhip effect prediction	systems and			Meta
	of a supply chain using	supply chain	"Chiadamro		prediction
35	regression analysis	management	ng N et al	Auto industry	model
		International			
	An empirical investigation	journal of public			
	of bullwhip effect:	sector	"Gupta S. et		Empirical
36	practices perspective	management	al		model

SD theory: system dynamic theory

ARMA: auto regressive moving average

CAPM: capital asset pricing model

WPF- DEA: Window presentation foundation- data envelopment analysis

The above table shows the selected 36 SLR related to the bullwhip effect. It is evident from the table that the benefited parties are the manufacturers, suppliers, customer, investors. Main focus drawn towards the inventory management. The theories used in this are CAPM, ARMA, holistic thinking theory, game theory. The main author citation is Ponte, B et al., Gupta S. et al. The data taken from 2017 to 2024. Main sources are web science and scopus.

Tabel 2 The above table shows the geographical location in which researches related to bullwhip effect conducted.

Geographical location	Number
United Kingdom	4
China	5
India	2
Iran	5
The United States	2

The most collaboration countries are Iran, United Kingdom and then China. The main articles of bullwhip effect come from these countries contributed significant knowledge. Every entrepreneur needs solution for reducing cost for inventory. And also, India shows effect of bullwhip effect on the overall cost of supply chain participants.

Table 3	The table 3	shows the	imnactor	factor of	iournal	which is	not less	than 1	1
Table J	The table 5	shows the	ппрастог	Tactor of	journar	WHICH IS	1101 1632	uiaii 1	L.

Impact factor	Impact factor
INJ J PROD ECO	12
COMPUT IND ENG	7.9
Omega INJ J MANAGE	6.9
J THEOR APPL EL COMM	5.6
Omega (United Kingdom)	8.673
contemporary accounting research	6.2

The impact factor shows which journal is most authentic research paper are efficiently reviewed. The most authentic journal in the supply chain management fined from impact factor are international journal of production economics has impact factor of 12 and the other journal is computer industrial and engineering is 7.9 and the other journal mentioned above are omega, contemporary accounting research.

Table 4 By following the TCCM framework following table show the independent variable,mediating variable and dependent variable.

	Characteristics		
	Independent variable	Mediating variable	Dependent variable
1) 1	Batch size	Customer service	Closed loop supply
2)	Capacity restrictions, responsive		Order rate variance,
	factor, customer demand, safety		inventory variance, full
	stock,	Market and firm	rate
3)	Variance amplification	Response surface	Supply chain
4)		Transportation,	
	Customer demand	production	Bullwhip effect, lead time
5)		Collaboration and	Supply chain
	Operations	information	performance
6)	quality grading scheme	Returned products	Closed loop supply
7)	Cooperative relationship	Knowledge	Performance
8)	Lead time, forecasting parameter	Ordering policy	OVR, NSA.AFR
9)		Transport risk, quality	
	Time period, demand	risk	Quantity of product
10)		Wholesaler, factory,	
	Actual sales	supplier, inventory	Stock out
11)			Buyer and supplier,
	Bullwhip effect and ripple effect	***	global airline industry
12)		Information	
	Remanufacturing lead time	transparency	Return rate
13)		Attitude towards	
	Overall thinking orientation	contradiction	Bullwhip effect
14)	Time	****	Inventory state
15)			Retailer, wholesaler and
	End customer demand	Information sharing	manufacturing inventory

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

16)		Decentralized or	
	Demand forecasting	centralized system	Price fluctuation
17)	DDI	Lead time	Inventory level
18)	Customer orders, manufacturing		Retailers, distributers
	time delay.	Raw materials	suppliers.
19)			inventory in hand or stock
	Information	***	out
20)		Capacity and	
	System performance	flexibility	Bullwhip effect
21)	Wholesale price	Transport cost	Demand
22)			Select distribution
	Customer demand	Replenishment policy	channel
23)	Demand	***	Bullwhip effect
24)	Price	Profitability	Bullwhip effect
25)	Network data development		
	analysis	***	Bullwhip effect
26)	Yield manufacturer, customer		Demand recyclable items,
	demand	Waste collected	variance amplification
27)	Demand	Order lot size	Production
28)			Bullwhip effect, time
	Operational variable	lead time	invariant
29)	Operational variable		Financial variable
30)		Mismanagement and	
	Working capital	management	Cash flow bullwhip effect
31)		Overstocking,	Vendor management
		Obsolescence,	inventory, form
	Bullwhip effect	Stockholding cost	postponement
32)		Management	Sales and operation
	Supply chain performance	performance	planning
33)	Fixed cost	Inventory, assets	Cogs, sales revenue
34)	Demand uncertain	Cost structure	Bullwhip effect
35)	Demand	Replenishment	Bullwhip effect

The above shows the independent variable, moderating variable and dependent variable. This shows the relationship between various variables operational variables, customer demand, fixed cost, supply chain performance. The mediating variable are marketing firm, ordering policy, transportation, waste collected and lead time. The dependent variable shows the production, cost of goods sold, bullwhip effect.

Table 5 The methodology used in the SLR are shown below whether it is quantitative, qualitativeor mixed.

Methodology	Serial no.
Quantitative	2,4,5,7,8,10,12,16,17,22,25,26,31,33,35.
Quantitative	9,11,13,14,18,21,28,29.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Mixed 27

Every researcher has choice which method to choose according to the study conducted. The empirical study or theoretical or mixed. Here in this study the main focus is towards the quantitative method and the use of qualitative method and one study used the abductive method.

Result

Theory development

This section lists every article that was examined and included in the review of the literature from 2017 to 2024. Journal titles, theories, and author citations are shown in table 1 and most of researches are empirical and other theoretical. Most of the research articles include supply chain (8), bullwhip effect (11), demand uncertainty (4)

Context

The bullwhip effect was the primary environment in which the research was done mainly manufacturers (11) suppliers (4) firm (3) customers (5) companies (2) shown in table 1. The geographical indication is (UK), (USA), (Iran), (China), (India) shown in table 2.

Characteristics

Most of the articles using independent variable and outcomes. This is listed in table 1 independent variable are customer demand, wholesale price, operational variable, supply chain performance and dependent variable are bullwhip effect, revenue, cost.

Methodology

Types of the quantitative research (15), qualitative research (8), mixed research (1) in the tile of bullwhip effect

Discussion

This section discusses the previous finding TCCM framework. Under the review of extant literature on bullwhip effect. The theory used are mathematical model, ARMA and game theory. The utility analysis is used for suppliers, firm, customers. The content used in the customer demand, supply chain performance and dependent variable are bullwhip effect, revenue and cost. The methodology used are quantitative, qualitative and mixed.

Theory

The comprehensive study of systematic literature review the following theories are revealed:

System dynamic theory (SD theory)

Utilizing system thinking, SD is a type of computer simulation technology that analyses inventory management, production management, and other organizational problems (Ekanayake, E. M. A. C.et al (2021); (Luo, J., Ding, Y.et al (2023); (Zhang, Z., Zargham, M., & Preciado, V. M. (2020). In the area of supply chain inventory management, it has been extensively utilized, and researchers have produced useful findings (Forrester, J. W. (1997). The outcome demonstrated that prepayment financing improves supply chain performance and offered solid theoretical backing and a basis for comparison for later research projects (Zhou, Y., Li, H., Hu, S., & Yu, X. (2022).

Auto regressive moving average (ARMA model)

ARMA model is a more real model for the demand process, thus more accurate for real-world (Duc, T. T. H., Luong, H. T., & Kim, Y. D. (2010). This model suitable for the time series of demand process as compared to the AR model because it has a combined characteristics of MA model and autoregressive process (Pindyck, R. S., & Rubinfeld, D. L. (1988).

Game theory

A retailer fixes the prices against the supplier selling prices, and the supplier mention prices based on the manufacturer's selling prices (Gamasaee, R., & Fazel Zarandi, M. H. (2018). the game theory model with the use of time series model used for finding the optimal prices in an SC. However, the optimal prices are put into the time series model for predicting elasticity of demands in supply chain. Through this theory the bullwhip effect will drastically (Gamasaee, R., & Fazel Zarandi, M. H. (2018).

Characteristics

Lead time

Lead time is when the order is placed and receiving delivery time gap through which the replenishment policy will be decided (Gaalman, G., Disney, S. M., & Wang, X. (2022). This variable used for the reduction un bullwhip effect if lead time is reduced and companies' motto is also focus on it (Gaalman, G., Disney, S. M., & Wang, X. (2022).

Inventory level

The main aim is to efficient utilisation of resources according to the product life cycle. information is collected of used products and new innovation is when required (Ponte, B., Cannella, S.et al (2021). The inventory level helps in lowering the investment cost and bullwhip effect (Guide and van Wassenhove, 2009; Abbey and Guide, 2018; Pazoki and Samarghandi, 2020).

Distorted information

The amplifying effect of customer demand due to distorted information (Panić, B., Kovačević, I., Vujošević, M., & Kuzmanović, M. (2020). The information delivered from retailer to manufacturer will go up according to their position of demanded products. This will not only increase inventory cost but also backlogs (Panić, B., Kovačević, I., Vujošević, M., & Kuzmanović, M. (2020).

Context

The cooperativeness will increase in the supply chain if the participants of supply chain want to reduce bullwhip effect. The main benefit received by the society resources used efficiently, manufacturer cost of production reduces, no issue of overstocking by wholesaler and retailer. The fear of obsolesce will be reduced.

Methodology

Most of researches are quantitative and some are qualitative. The sample method used by them are mainly

- Experimental
- Simulation method
- Observation
- Questionnaire
- Structure and semi-structure interview

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Gaps addressed in the reviewed systematic literature for future agenda

Theory	SC-wide integrated DRP logic.
	• Newly available theory to show ratio b/w bullwhip effect and cost
	structure
	Comprehensive supply chain system model and evaluation system
	• Function of the WMA/Newton approach.
characteristics	Forecasting and ordering policy parameters
	• Forecasting and ordering policy parameters under correlated demand
	• Re-evaluate the relationship between the length of the
	lead time and the magnitude of the BWE
	• Analysing the impact of compound causes of BWE
Context	Organizational structure change and production adjustment.
	• Problem will be greater when supply chains are more global than
	regional due to volatility in consumer demand.
methodology	Quantifying the bullwhip effect in a CLSC system
	LQG optimal controller
	• Analytical formula is an approximation search of an exact (or less
	approximate) formulation

Conclusion

The aim of study is to go through systematic literature review of the bullwhip effect reduced by data base management system. To develop rigorous framework PRISMA framework is used. The research article on this topic searched 715 and after all the screening article included 36. The results produced by using the TCCM framework. The main characteristics are lead time, distorted information, inventory level. Through the help of database management system information will be recorded, new innovation will be introduced when needed, consumer grievances will be solved and many more.

From the theoretical point of view, the game theory, SD theory are used which drastically reduce the bullwhip effect which is the major concern for every businessman. The result of this study is studying every variable simultaneously and mitigation by opting data base management system which other researches does not perform. The future researches can show the different types of bullwhip effect variables and why they occur. This study especially useful for the new entrepreneurs who do not well about the demand and orders accurately.

Reference

- 1. Cannella, S., Dominguez, R., Ponte, B., & Framinan, J. M. (2018). Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times. *International Journal of Production Economics*, 204, 264-277.
- 2. Schisgall, O. (1981). Eyes on tomorrow: the evolution of Procter & Gamble. (No Title).
- 3. Forrester, J. W. (1958). Industrial dynamics: a major breakthrough for decision makers. *Harvard business review*, *36*(4), 37-66.

- 4. Beer, A. (2014). Der Bullwhip-Effect in enemy complexion Productions network. Springer-Verlag.
- 5. Chopra, S., & Meindl, P. (2007). *Supply chain management. Strategy, planning & operation* (pp. 265-275). Gabler.
- Cannella, S., Dominguez, R., Ponte, B., & Framinan, J. M. (2018). Capacity restrictions and supply chain performance: Modelling and analysing load-dependent lead times. *International Journal of Production Economics*, 204, 264–277. https://doi.org/10.1016/j.ijpe.2018.08.008
- Cuong, T. N., Kim, H. S., Bao Long, L. N., & You, S. S. (2023). DECISION SUPPORT SYSTEM FOR MANAGING MULTI-ECHELON SUPPLY CHAIN NETWORKS AGAINST DISRUPTIONS USING ADAPTIVE FRACTIONAL ORDER CONTROL ALGORITHM. *RAIRO - Operations Research*, 57(2), 787–815. https://doi.org/10.1051/ro/2023035
- 8. Dominguez, R., Cannella, S., Ponte, B., & Framinan, J. M. (2020). On the dynamics of closed-loop supply chains under remanufacturing lead time variability. *Omega (United Kingdom)*, 97. https://doi.org/10.1016/j.omega.2019.102106
- 9. Mapanga, I., & Kadebu, P. (2013). Database Management Systems: A NoSQL Analysis. In *International Journal of Modern Communication Technologies & Research (IJMCTR)* (Issue 1).
- Ponte, B., Cannella, S., Dominguez, R., Naim, M. M., & Syntetos, A. A. (2021). Quality grading of returns and the dynamics of remanufacturing. *International Journal of Production Economics*, 236. <u>https://doi.org/10.1016/j.ijpe.2021.108129</u>
- Ekanayake, E. M. A. C., Shen, G. Q., Kumaraswamy, M. M., Owusu, E. K., & Saka, A. B. (2021). Modeling supply chain resilience in industrialized construction: a Hong Kong case. *Journal of Construction Engineering and Management*, 147(11), 05021009.
- 12. Luo, J., Ding, Y., Chen, W., & Kuang, H. (2023). RETRACTED ARTICLE: Modeling method and simulation of regional economy and port interactive development system dynamics. *Annals of Operations Research*, 326(Suppl 1), 123-123.
- 13. Zhang, Z., Zargham, M., & Preciado, V. M. (2020). On modeling blockchain-enabled economic networks as stochastic dynamical systems. *Applied Network Science*, 5(1), 19.
- 14. Forrester, J. W. (1997). Industrial dynamics. *Journal of the Operational Research Society*, 48(10), 1037-1041.
- Zhou, Y., Li, H., Hu, S., & Yu, X. (2022). Two-stage supply chain inventory management based on system dynamics model for reducing bullwhip effect of sulfur product. *Annals of Operations Research*, 1-19.
- 16. Duc, T. T. H., Luong, H. T., & Kim, Y. D. (2010). Effect of the third-party warehouse on bullwhip effect and inventory cost in supply chains. *International Journal of Production Economics*, *124*(2), 395-407.
- 17. Pindyck, R. S., & Rubinfeld, D. L. (1988). Econometric models and economic forecasts.
- 18. Gamasaee, R., & Fazel Zarandi, M. H. (2018). Incorporating demand, orders, lead time, and pricing decisions for reducing bullwhip effect in supply chains. *Scientia Iranica*, *25*(3), 1724-1749.
- 19. Gaalman, G., Disney, S. M., & Wang, X. (2022). When bullwhip increases in the lead time: An eigenvalue analysis of ARMA demand. *International Journal of Production Economics*, 250, 108623.
- 20. Panić, B., Kovačević, I., Vujošević, M., & Kuzmanović, M. (2020). The Impact of Cooperativeness Supply Chain Performances. *International Journal of Engineering Education*, *36*(6), 1877-1888.
- 21. Croson, R., Donohue, K., Katok, E., & Sterman, J. (2014). Order stability in supply chains: Coordination risk and the role of coordination stock. *Production and Operations Management*, 23(2),

176-196.

- 22. Sterman, J. D. (1989). Misperceptions of feedback in dynamic decision making. *Organizational behavior and human decision processes*, 43(3), 301-335.
- 23. Croson, R., & Donohue, K. (2006). Behavioral causes of the bullwhip effect and the observed value of inventory information. *Management science*, *52*(3), 323-336.
- 24. Kovacevic, I., Panic, B., Vujosevic, M., & Kuzmanovic, M. (2013). Application of transactional analysis in bullwhip effect analysis. *Amfiteatru Economic*, 15(33), 210.
- 25. Ruël, G., van Donk, D. P., & van der Vaart, T. (2006). The beer game revisited: Relating risktaking behaviour and bullwhip effect. *Proceedings of EurOMA*, 403-412.