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Abstract 

This research launches a novel Competency-Quality Temporal-Graph Network (CompQual-TGNet) 

which serves as a hybrid deep learning (DL) framework to study oil and gas business operations through 

competency metrics and quality indicators. The system combines Graph Neural Network (GNN) and 

Temporal Convolutional Network (TCN) technology to analyze multiple operational datasets and make 

accurate future performance estimates. The preprocessing system builds strong data connections by 

standardizing values with Z-score normalization while handling missing values via Multivariate 

Imputation by Chained Equations (MICE), finding outliers through Interquartile Range (IQR) and 

matching temporal data patterns across different inputs. The system also enhances outputs with advanced 

feature engineering methods including feature extraction and fusion. The proposed framework uses Multi-

View Matrix Factorization (MVMF) to extract shared latent features, and Cross-Dataset Attention 

Mechanism (CDAM) to identify correlations. Moreover, Dynamic Feature Importance Network (DFIN) 

to learn optimal feature combinations across datasets, and Cross-Attention Fusion Layer to create context-

aware feature representations are employed for fusion. Besides, this development brings together GNN 

for mapping interdependencies among operational components and personnel competencies and TCN for 

monitoring operational history and long-term temporal patterns. The adaptive fusion layer uses weighting 

and attention modules to unite these models to make clear predictions based on domain-relevant 

predictions. The proposed framework shows improvement through updating graphs during operations, 

adjusting loss functions to match target requirements, and transferring learned models for constant 

updating. Using these data sources, the developed CompQual-TGNet predicts operating efficiency and 

detects quality problems with 94.2% accuracy and outran existing systems. 

 

Keywords: Competency and Quality, Deep Learning, Oil and Gas, TCN, GNN 

 

1. Introduction 

The oil and gas sector is the core of almost everything, which further translates to operational excellence 

being crucial for production and profit [1]. This business sector has high stakes and operational 

performance relies on two things: process quality and a competent workforce [2]. Competency metrics 

focus on auditing the personnel’s skills, experience, and performance to gauge how well people perform 

their tasks safely and efficiently [3]. On the other hand, quality metrics focus on the health and 
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performance of machines, workflows, and output standards to see which areas need more work [4]. The 

growing operation complexity, due to the latest regulations, advanced machinery, and automation, has 

made real-time monitoring and optimization essential [5]. Competency and quality management are now 

a top priority in everything because neglecting these areas can cost too much in terms of operational 

failures, inefficiency, and financial loss [6]. 

So far, Oil and Gas remain a vital resource across the world and taking care of workforce competency is 

one area that has a lot to focus on [7]. The methods that analyze competency and quality metrics do have 

severe limitations. Competency metrics in oil and gas are analyzed using heuristic query methods and 

rule-based classification schemes that are both weak [8]. All of these are inefficient in monitoring the 

integrated complex relations in oil and gas operations. For example, it is common to assess workforce 

ability using relatively simplistic measures, such as certificates, experience, or completed training. Such 

measures do not reveal how people operate in different contexts [9]. On the other hand, quality indicators, 

like rates of equipment failure, maintenance logs or even production bottlenecks, are scrutinized 

separately, paying no attention to the machinery, the environment, or people’s actions at the moment. In 

addition to this, current systems are unable to cope with the volume of multi-modal data emitted by 

sensors, logs, and humans prompting slower reaction times and inadequate making of decisions [10]. 

On the other hand, it is also clear that new approaches that combine seamless integration of various data 

sources, deep dependencies, and flexible operational parameters are needed. The novel developments in 

DL, and specifically hybrid frameworks, provide the right tools to address these difficulties head-on [11]. 

Convolutional Neural Networks (CNNs) [12] are good at representing interrelations and dependencies, 

such as the relationships between the skills of the workforce and the performance of the equipment, while 

Recurrent Neural Networks (RNNs) [13] are good at modeling time series data through capturing long-

range temporal relationships. Although CNNs are great at understanding spatial relationships, they do 

poorly on sequential dependencies and long-term context with time-series data [14]. Likewise, RNNs do 

well modeling temporal relationships, but have issues with vanishing gradients and computation that 

makes them inefficient and poorly scalable with large datasets [15]. For this reason, this research aims to 

develop a novel model that integrates GNN, and TCN technologies to make it possible to construct a single 

coherent system that is able to continuously monitor and provide actionable insights on a range of 

competency and quality metrics. This research presents such a system, CompQual-TGNet, which seeks to 

overcome the weaknesses in other methods while also utilizing GNN, varying loss functions, and 

interpretable attention systems for a more efficient method of optimizing oil and gas operations. This 

approach hopes to provide new opportunities for industry players to make decisions at the high levels of 

the company by increasing operational effectiveness and ensuring sustainable development. The key 

contributions are: 

• To develop a hybrid framework CompQual-Net, an advanced DL network that combines GNNs and 

TCNs to analyze different types of oil and gas operation data and find key workforce performance 

measures. 

• To introduce a novel feature extraction and fusion model using MVMT, CDAM, and DFIN with cross-

attention fusion layers. 

• To attain high accuracy and real-time adaptability by accomplishing 98.2%, and could quickly update 

its results using existing knowledge to make ongoing improvements. 

This article is structured as a recent literature on oil and gas production prediction models in Section II. 

Implemented framework and the description are given in Section III. Results and the betterment of propo- 
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sed model over other models are presented in Section IV. Section V ends the research. 

 

2. Literature Study 

2.1. Recent Research 

In 2024, Oyewola et al [16] created new methods using LSTM called DLQL and DLAQL to help 

exploration of oil and gas industry stock forecasts. To test the findings, the researchers relied on past stock 

data. Besides, a pattern recognition algorithm called Markov Decision Process (MDP) was employed to 

train both DLQL and DLAQL models. 

In 2024, Zhou et al [17] established an empirical Duong model for physical limitations. In this study, a 

CNN with an LSTM network was developed to create a new model called D-C-L. The introduced D-C-L 

model estimated shale oil production faster and more accurately than traditional methods while also saving 

time and resources. 

In 2024, Chen et al [18] suggested a CNN-GRU model that combined CNN and Gate Recurrent Unit 

(GRU). The GRU layer modeled temporal information using the transmitted characteristics for prediction. 

In the meantime, the CNN layer extracted features from variables influencing oil output. The best 

hyperparameter settings were found for CNN-GRU via the Bayesian Optimization (BO) algorithm. 

In 2024, Fargalla et al [19] combined CNN, and Bidirectional GRU (BiGRU) called TimeNet. Here, 

Time2Vec was incorporated to simplify data analysis and automatically gather deep, complicated physical 

time patterns without manual processing. The BiGRU tracked shifts in values while spotting long-term 

patterns, while the CNN found details about how data points surrounded one another. 

In 2024, Yang et al [20] explained an Adaptive Particle Swarm Optimization-Least Squares Support 

Vector Machine (APSO-LSSVM) and a CNN to improve gas-bearing predictions. This methodology 

simplified feature optimization by directly extracting features from sensitive multicomponent seismic 

properties. 

In 2024, Zhiyuan & Jiang [21] offered A Correlation Variational Mode Decomposition (CVMD), 1D-

CNN, and LSTM. The noise removal series was divided into smaller groups of less variable sequences. 

Subsequently, CVMD was used to shut off the initial alarm sequence noise. For each separate part of the 

sequence, CNN-LSTM forecast models were created one after another. 

2.2. Problem Statement 

Table 1 demonstrates the aim and limitations of recent literature about oil and gas production prediction 

using various models. Keeping track of gases that dissolve in transformer oil is needed to keep power 

systems running smoothly. Most standard prediction techniques miss important connections between 

geological, environmental, and operational factors. Since more data now comes from sensors, production 

logs, and seismic measurements, smart prediction models are needed that can deal with these growing data 

sources well. Regular LSTM networks find it difficult to analyze complex connections and essential details 

within these datasets on their own. Since these models can't predict well, their warnings about faults 

become less reliable. The welding industry needs better tools that can handle data issues, clean up data 

properly, and understand patterns better to make more certain condition predictions. ML and DL methods 

help predict, but they struggle with data flaws, irregular patterns, and feature relationships that are hard to 

measure. The oil and gas industry demands improved methods that make better predictions, fix mistakes, 

and provide useful guidance for key decisions. Gas and oil prediction benefits greatly from ML and DL 

which help analyze massive amounts of intricate data and find hidden connections. CNNs and LSTMs 

specifically match patterns in images (CNNs) and understand sequences in time data (LSTMs). This helps 
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them predict production outcomes with higher accuracy. There are problems with these models that they 

take heavy computing power and lots of marked-up data to train, making it tough to understand how they 

predict results. Also, industrial businesses that need to see clear answers struggle to use these models. The 

truth is, that real-world oil and gas samples come with both noisy results and empty spots in their data, 

making modeling harder. Thus, there exists a reason to develop novel methodologies with enhanced 

accuracy and lightweight architecture. 

 

Table 1. Aim and Limitations of Recent Literature about Oil and Gas Production Prediction using 

Various Models 

Authors/Year Methods Aim Advantages Limitations 

Oyewola et al 

[16] in 2024 

DLQL 

and 

DLAQL 

To develop accurate 

stock price 

prediction in the oil 

and gas sector 

Enhanced prediction 

accuracy to dynamic 

market condition 

Exposed computational 

complexity and high 

training time 

Zhou et al [17] 

in 2024 

D-C-L 

Model 

To develop efficient 

prediction of shale 

oil production 

Offered superior 

precision, efficiency, 

and cost-

effectiveness 

Revealed high 

computational demand 

due to the integration of 

CNN, LSTM, and 

empirical modeling 

Chen et al [18] 

in 2024 

CNN-

GRU 

To present a DL 

model for accurate 

prediction of oil 

production 

Outperformed 

traditional and 

hybrid methods 

Exhibited dependency on 

sufficient and high-

quality data 

Fargalla et al 

[19] in 2024 

TimeNet To develop a 

precise prediction 

of gas production in 

shale and sandstone 

fields 

Achieved superior 

prediction accuracy 

Increased computational 

overhead due to 

integration of multiple 

advanced components 

Yang et al [20] 

in 2024 

APSO-

LSSVM 

To offer a hybrid 

model for gas-

bearing prediction 

Outran individual 

models and 

accomplished better 

prediction accuracy 

Increased training time 

and resource demands 

Zhiyuan & Jiang 

[21] in 2024 

CVMD To introduce a 

model for accurate 

prediction of 

dissolved gases in 

transformer oil 

Attained improved 

single-step and 

multi-step prediction 

accuracy 

Multiple decomposition 

and modeling steps 

reduced the model’s 

efficacy 

 

3. A Novel Oil and Gas Production Prediction Based On Competency And Quality Metrics 

3.1.Proposed Architecture 

This study introduces a new hybrid DL framework called CompQual-TGNet, which uses quality indicators 

and competency metrics to analyze the operations of oil and gas companies. The system analyses several 

operational datasets and generates precise predictions about future performance by combining GNN and 
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TCN technologies. By using Z-score normalization to standardize values, Multivariate Imputation by 

Chained Equations (MICE) to handle missing values, matching temporal data patterns across several 

inputs, and Interquartile Range (IQR) to identify outliers, the preprocessing system creates robust data 

connections. Advanced feature engineering techniques like feature extraction and fusion are also used by 

the system to improve outputs. The suggested approach finds correlations using CDAM and extracts 

shared latent features using MVMF. Additionally, DFIN is used to learn the best feature combinations 

across datasets, and the cross-attention fusion layer is used to generate context-aware feature 

representations. This research combines TCN for tracking operational history and long-term temporal 

patterns with GNN for mapping interdependencies among operational components and personnel 

competencies. These models are combined by the adaptive fusion layer using weighting and attention 

modules to produce precise predictions based on domain-relevant predictions. By transferring learnt 

models for continuous updating, modifying loss functions to meet target criteria, and updating graphs 

during operations, the suggested system demonstrates improvement. Figure. 1 addresses the overview of 

the proposed framework. 

 

Figure 1. Overview of the Proposed Framework 

 
3.2.Preprocessing Pipeline 

This research aims to accurately predict oil and gas production under certain conditions. Intending to 

achieve the goal, a preprocessing procedure is applied in this research to make the raw data fit for the 

proposed DL framework. It includes: 
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3.2.1. MICE Algorithm 

The MICE [22] method predicts missing values based on observed data iteratively. The conditional 

probability of missing data is given in Eq. (1), in which Xmissing addresses missing values in the dataset, 

Xobserved refers to observed (available) values, and P(Xj|X−j) stands for  probability of missing value Xj 

conditioned on other features X−j. 

P(Xmissing|Xobserved) = ∏ P(Xj|X−j)j   (1) 

Here, the missing value Xj is estimated via Eq. (2), where f(X−j) states linear regression model, and ϵ ∼

N(0, σ2) that addresses Gaussian noise to simulate uncertainty. 

Xj = f(X−j) + ϵ    (2) 

Steps given below define the implemented MICE algorithm. 

Algorithm 1: Steps in Implemented MICE Algorithm 

Input Dataset X with missing values, maximum iteration M 

Output Imputed dataset Ximputed 

Step 1 Initialize Missing Values 

Assign initial estimates to missing values (using mean imputation) 

Step 2 Iterative Regression 

For i = 1: M 

For each missing value Xj 

Partition X into Xj and X−j 

Fit regression model f(X−j) 

For each missing feature j 

Predict the missing value using Eq. (2) 

End for 

End for 

End for 

Step 3 Output the imputed dataset Ximputed 

 

3.2.2. Z-Score Standardization 

Normally, Z-score normalization [23] is applied to ensure that all features have a mean of 0 and a standard 

deviation (SD) of 1, which is crucial for improving convergence and performance in Machine Learning 

(ML) models as shown in Eq. (3), in which Zi states standardized value for sample i, Xi refers to raw value 

for sample i, μ and σ indicate mean and SD of the dataset, and N points to sample count. 

Zi =
Xi−μ

σ
     (3) 

3.2.3. Temporal Alignment 

Generally, temporal alignment [24] is crucial when dealing with time-series data from different sensors or 

sampling rates. Furthermore, it ensures that data points across all sensors are aligned in time. Eq. (4) 

formulates the alignment function, where A(t) defines temporally aligned data at time t, W(τ) signifies 

weighting function to capture temporal dependencies and X(t − τ) states data value shifted by τ units. 

A(t) = ∫ W(τ) ⋅ X(t − τ)dτ   (4) 

Here, Dynamic Time Warping (DTW) [25] is employed to apply weighting mechanisms that align time-

series data by minimizing the distance between temporal sequences as indicated in Eq. (5), in which 
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min ∑ W(i, j) ⋅ ‖Xi − Yj‖
2

i,j    (5) 

Besides, a cross-correlation maximization [26] procedure is added to maximize the correlation between 

time-series X and Y as explained in Eq. (6), where T refers to total length of the time series, k states time 

lag, xt signifies value of X time series at time t, and yt+k denotes value of the Y time series lagged by k. 

CC(k) = ∑ xt ⋅ yt+k
T=k
t=1    (6) 

This process ensures that the time series X and Y are maximally correlated by providing an optimal. 

3.2.4. IQR Outlier Removal 

Typically, IQR outlier removal [27] is a statistical method to detect and remove outliers in data based on 

the IQR. The IQR is defined as the difference between the 75th percentile (Q3) and the 25th percentile 

(Q1) of a dataset as formulated in Eq. (7). 

IQR = Q3 − Q1    (7) 

Using the IQR, outliers are defined as data points that lie below the lower bound LBound or above the 

upper bound UBound. The thresholds are calculated based on Eq. (8), in which k denotes a constant that 

determines the sensitivity of the outlier detection. 

LBound = Q1 − k ⋅ IQR; UBound = Q3 + k ⋅ IQR (8) 

Data points that fall outside the bounds are considered outliers as expressed in Eq. (9). 

Outliers = {x|x < LBound or x > UBound}  (9) 

Finally, the outliers are filtered out from the dataset as given in Eq. (10). 

CleanedData = {x|LBound ≤ x ≤ UBound}  (10) 

 

3.3. Feature Engineering 

ML pipelines require to transform of raw data through feature engineering. The system converts numerical 

inputs into useful results through mathematical operations including matrix factorization, attention 

mechanisms, adversarial learning, and DFIN. 

3.3.1. Feature Extraction Module 

In this module, the significant features from both the datasets are extracted. 

3.3.1.1.MVMF 

MVMF [28] identifies shared latent representations for multiple views (datasets) and extracts view-

specific transformations as represented in Eq. (11), where X1
norm, X2

norm states normalized input matrices 

for views 1 and 2, U1, U2 refer to shared latent feature matrices for both views, V1, V2 stand for view-

specific transformation matrices, λ denotes regularization parameter controlling the alignment of U1 and 

U2, I represents id entity matrix ensuring orthogonality between shared latent spaces, and ‖∙‖F
2 addresses 

Frobenius norm for matrix reconstruction error minimization. 

minL(U1, V1, U2, V2) = ‖X1
norm − U1V1

⊤‖F
2 + ‖X2

norm − U2V2
⊤‖F

2 + λ‖U1
⊤U2 − I‖F

2  (11) 

3.3.1.2.Proposed CDAM 

Here, the CDAM is designed to model interactions and relationships between features in two datasets X1 

and X2. It uses attention mechanisms, dynamic weighting, and multi-scale processing for the enhancement 

of cross-dataset feature learning. Eq. (12) shows the query (Q), key (K), and value (V)  transformation, in 

which WQ, WK, WV define learnable weight matrices for transforming input datasets into queries Q1), keys 

(K2), and values (V2), and X1, X2 address input datasets. 

Q1 = X1WQ, K2 = X2WK, V2 = X2WV (12) 
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Eq. (13) computes the attention scores, in which dk refers to dimensionality of the key vectors that are 

used to scale the dot product for stable gradients, and A denotes attention matrix that represents strength 

of interaction between X1 and X2. 

A = softmax (
Q1K2

⊤

√dk
)    (13) 

The cross features are attained via Eq. (14), where Fcross states aggregated features from X2 that are 

weighted by the attention scores. 

Fcross = A ⋅ V2    (14) 

To enhance the performance of CDAM, a dynamic weighting process is applied which ensures the 

attention mechanism is adaptively tuned based on dataset statistics. Eq. (15) dynamic weight function, 

where X1
stats, X2

stats refer to statistical summaries of X1 and X2, such as mean, SD, and higher-order 

moments, σ addresses sigmoid activation function, and MLP stands for Multi-Layer Perceptron for 

nonlinear transformations. 

w(X1, X2) = σ(MLP([X1
stats; X2

stats])) (15) 

Furthermore, adaptive attention is employed as formulated in Eq. (16), where Aadaptive signifies 

dynamically weighted attention matrix. 

Aadaptive = w(X1, X2) ⋅ A   (16) 

3.3.1.3.Adversarial Feature Generation 

In this module, adversarial networks [29] are used to create synthetic features to augment data and improve 

robustness. Eq. (17) expresses the minimax optimization, where G(z) refers to synthetic data generated 

from noise z ∼ Pz, D(x) addresses discriminator output probability that x is real, Pdata points to real data 

distribution, and Pz signifies noise distribution. 

min
G

max
D

V(D, G) = Ex∼Pdata
[logD(x)] + Ez∼Pz

[log (1 − D(G(z)))]  (17) 

Figure 2 displays the architecture of feature engineering module. 

Figure 2. Architecture of Feature Engineering Module 
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3.4. Dual Processing Stream in Proposed CompQual-TGNet 

In the proposed CompQual-TGNet, two different DL models are combined: TCN [30], and GNN [31]. 

3.4.1. Novel TCN Architecture 

The proposed architecture integrates multi-resolution temporal processing, adaptive attention 

mechanisms, and feature gating to capture temporal dependencies. Moreover, it adaptively focuses on 

critical features and ensures efficient feature propagation. 

3.4.1.1.Multi-Resolution Temporal Block 

The multi-resolution temporal block is designed to extract temporal features across multiple resolutions 

which enables the network to capture long-term dependencies and fine-grained details effectively. The 

input tensor 𝑥 is a 3D array of the shape as specified in Eq. (18), where 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 states number of input 

sequences in a batch, 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ refers to length of each sequence, and 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 stands for number 

of features per time step. 

𝐼𝑛𝑝𝑢𝑡𝑆ℎ𝑎𝑝𝑒:  [𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 , 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠]          (18) 

Each convolution operation uses a dilation rate 𝑑 and kernel size 𝑘 to capture features at various temporal 

scales. The operations are performed in parallel as shown in Eq. (19), where 𝑑 stands for dilation rate, and 

𝑘 refers to kernel size. 

𝐷1:  𝑑 = 1, 𝑘 = 3
𝐷2:  𝑑 = 2, 𝑘 = 5
𝐷3:  𝑑 = 4, 𝑘 = 7
𝐷4:  𝑑 = 8, 𝑘 = 9

      (19) 

Eq. (20) illustrates the dilated convolution formulation, in which 𝑦𝑖 states output at time step 𝑖, 𝑤𝑘 

addresses convolution kernel weights, 𝑥𝑖+𝑘⋅𝑑 denotes input values spaced apart by 𝑑, and 𝐾 specifies 

kernel size. 

𝑦𝑖 = ∑ 𝑤𝑘 ⋅ 𝑥𝑖+𝑘⋅𝑑
𝐾−1
𝑘=0     (20) 

An attention mechanism is applied to enhance the temporal relationships at each dilation level 𝑑 as 

signified in Eq. (21), in which 𝑥𝑑 represents output from dilated convolution with dilation rate 𝑑, and 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥) points to contextual representation learned by the attention layer. 

𝑥𝑑
′ = 𝑥𝑑 + 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥)   (21) 

The outputs from all dilation levels are combined using a weighted summation as given in Eq. (22), where 

𝑤𝑑 refers to learnable weights associated with each dilation level and 𝑥𝑑
′  states attention-enhanced output 

at dilation 𝑑. 

𝑂𝑢𝑡𝑝𝑢𝑡 = ∑ 𝑤𝑑 ⋅ 𝑥𝑑
′

𝑑∈{1,2,4,8}    (22) 

For each dilation level 𝑑, the forward pass involves dilated convolution as defined in Eq. (23), attention-

enhanced features in Eq. (21), and weighted summation of all levels in Eq. (22), where 𝑑 and 𝑘 are specific 

to each level (𝐷1, 𝐷2, 𝐷4, 𝐷8). 

𝑥𝑑 = 𝐶𝑜𝑛𝑣1𝐷(𝑥, 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 𝑑, 𝑘𝑒𝑟𝑛𝑒𝑙 𝑠𝑖𝑧𝑒 = 𝑘)  (23) 

The final output is a weighted combination of the features extracted at different temporal resolutions as 

illustrated in Eq. (24), where 𝑥𝑑1
′ , 𝑥𝑑2

′ , 𝑥𝑑4
′ , 𝑥𝑑8

′  refer to attention-enhanced outputs from dilation levels 

(𝐷1, 𝐷2, 𝐷4, 𝐷8). 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑠𝑢𝑚([𝑥𝑑1
′ , 𝑥𝑑2

′ , 𝑥𝑑4
′ , 𝑥𝑑8

′ ]) (24) 

3.4.1.2.Adaptive Temporal Attention 

Adaptive temporal attention focuses on specific time frames within the input sequence by computing 

attention weights dynamically. Eq. (25) expresses the query formation, where 𝑄 addresses query vector  
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for the current time step 𝑡, and 𝑊𝑞 , 𝑏𝑞 specify learnable weights and biases. 

𝑄 = 𝑊𝑞ℎ𝑡 + 𝑏𝑞    (25) 

The key-value generation is given in Eq. (26), in which 𝐾, 𝑉 address keys and values generated for a 

temporal window preceding 𝑡. 

𝐾 = 𝑊𝑘ℎ𝑡−𝑤𝑖𝑛𝑑𝑜𝑤:𝑡 + 𝑏𝑘, 𝑉 = 𝑊𝑣ℎ𝑡−𝑤𝑖𝑛𝑑𝑜𝑤:𝑡 + 𝑏𝑣    (27) 

Eq. (27) explains the attention scores. 

𝑠𝑐𝑜𝑟𝑒𝑠 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾⊤

√𝑑𝑘
)   (28) 

Eq. (28) computes the context vector. 

𝑐𝑡 = 𝑠𝑐𝑜𝑟𝑒𝑠 ⋅ 𝑉     (29) 

3.4.1.3.Feature Gating Mechanism 

The feature gating mechanism combines the current hidden state (ℎ𝑡) with the context vector (𝑐𝑡) to 

adaptively propagate temporal features. Eq. (29), (30), (31), and (32) explain update gate (𝑧𝑡), reset gate 

(𝑟𝑡), candidate gate (ℎ̃𝑡), and hidden state update ℎ𝑡+1. 

𝑧𝑡 = 𝜎(𝑊𝑧[ℎ𝑡; 𝑐𝑡] + 𝑏𝑧)   (29) 

𝑟𝑡 = 𝜎(𝑊𝑟[ℎ𝑡; 𝑐𝑡] + 𝑏𝑟)   (30) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ[𝑟𝑡 ⊙ ℎ𝑡; 𝑐𝑡] + 𝑏ℎ)  (31) 

ℎ𝑡+1 = (1 − 𝑧𝑡) ⊙ ℎ𝑡 + 𝑧𝑡 ⊙  ℎ̃𝑡  (32) 

 

3.4.2. Novel GNN Architecture 

In the proposed GNN architecture,  multi-head adaptive graph attention, dynamic edge updates, and 

hierarchical pooling are incorporated for scalable and adaptive graph processing. 

3.4.2.1. Multi-Head Adaptive Graph Attention 

In the multi-head adaptive graph attention layer, multiple attention heads are utilized. For each attention 

head 𝑘, the process involves several procedures. The edge attention coefficients are calculated using Eq. 

(33), where 𝑊𝑘 defines learnable weight matrix for head 𝑘, ℎ𝑖 and ℎ𝑗  are feature vectors for nodes 𝑖 and 

𝑗, ‖ denotes concatenation, and 𝑎𝑘 addresses learnable vectors for attention scoring. 

𝛼𝑖𝑗
𝑘 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑎𝑘 ⋅ [𝑊𝑘ℎ𝑖‖𝑊𝑘ℎ𝑗]) (33) 

Normalization is applied as signified in Eq. (34), in which 𝜎 non-linear activation function such as ReLU. 

ℎ𝑖
𝑘 = 𝜎(∑ 𝛼𝑖𝑗

𝑘 𝑊𝑘ℎ𝑗𝑗 )    (34) 

Besides, multi-head aggregation is carried out by concatenating the outputs from all attention heads to 

form the updated node feature as shown in Eq. (35). 

ℎ𝑖
′ = ||𝑘=1

𝐾 ℎ𝑖
𝑘     (35) 

3.4.2.2.Dynamic Edge Update Module 

A dynamic edge update module is added in the proposed GNN to dynamically update the edge features 

and structures. The edge feature 𝑒𝑖𝑗, representing the relationship between nodes 𝑖 and 𝑗, is updated 

dynamically. This update considers the features of the two connected nodes (ℎ𝑖 and ℎ𝑗) and the previous 

edge feature (𝑒𝑖𝑗
𝑝𝑟𝑒𝑣

). An MLP is used for this operation as estimated in Eq. (36), in which ‖ indicates 

concatenation operator, and 𝑀𝐿𝑃 is used to learn a nonlinear mapping. 

𝑒𝑖𝑗 = 𝑀𝐿𝑃(ℎ𝑖‖ℎ𝑗‖𝑒𝑖𝑗
𝑝𝑟𝑒𝑣)   (36) 
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Once the edge features are updated, they are normalized to form an updated adjacency matrix, 𝐴𝑛𝑒𝑤. This 

normalization is typically done using the softmax function across the edges connected to each node as 

indicated in Eq. (37), in which 𝐸 refers to matrix of updated edge features 𝑒𝑖𝑗 for all edges, and 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 

ensures that the edge weights sum to 1 for all edges connected to a given node. 

𝐴𝑛𝑒𝑤 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐸)    (37) 

Graph sparsification aims to retain only the most significant edges by removing redundant or noisy ones. 

The Gumbel Softmax function is applied to the normalized adjacency matrix, 𝐴𝑛𝑒𝑤 to generate a sparsity 

mask. The final adjacency matrix, 𝐴𝑓𝑖𝑛𝑎𝑙 is computed by element-wise multiplication of the mask and 

𝐴𝑛𝑒𝑤. Generate a sparsity mask as shown in Eq. (38), where 𝐺𝑢𝑚𝑏𝑒𝑙_𝑆𝑜𝑓𝑡𝑚𝑎𝑥 states a sampling 

technique that introduces stochasticity while allowing for differentiability by enabling sparse edge 

selection. 

𝑚𝑎𝑠𝑘 = 𝐺𝑢𝑚𝑏𝑒𝑙_𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐴𝑛𝑒𝑤)  (38) 

Eq. (39) computes the final adjacency matrix, where ⊙ denotes element-wise multiplication, and 𝐴𝑓𝑖𝑛𝑎𝑙 

points to sparsified adjacency matrix that retains the most important edges. 

𝐴𝑓𝑖𝑛𝑎𝑙 = 𝐴𝑛𝑒𝑤 ⊙ 𝑚𝑎𝑠𝑘   (39) 

3.4.2.3.Hierarchical Graph Pooling 

It is a technique used in GNN to reduce the size of the graph while retaining its most important structural 

and feature-related information. Each node in the graph is assigned a score based on its importance which 

is determined using an MLP. The score helps identify which nodes should be retained during the pooling 

process as defined in Eq. (40), in which 𝑠 states a vector of scores, where 𝑠𝑖 represents the score of node, 

𝐻 explains node feature matrix, where each row ℎ𝑖 represents the features of node 𝑖, and 𝑀𝐿𝑃 learns to 

map node features to importance scores. 

𝑠 = 𝑀𝐿𝑃(𝐻)     (40) 

Nodes with the top-𝑘 highest scores are selected to form a smaller graph. The value of 𝑘 is determined 

based on a predefined pooling ratio (0.5 for retaining 50% of the nodes) as expressed in Eq. (41), where 

𝑖𝑑𝑥 means to indices of the top-𝑘 nodes with the highest scores, 𝑟𝑎𝑡𝑖𝑜 refers to fraction of nodes to retain 

in the pooled graph, 𝑘 = ⌊𝑟𝑎𝑡𝑖𝑜 × 𝑁⌋, and 𝑁 addresses a total number of nodes. 

𝑖𝑑𝑥 = 𝑡𝑜𝑝𝑘(𝑠, 𝑟𝑎𝑡𝑖𝑜 = 0.5)   (41) 

The features of the selected nodes are pooled and weighted by their scores. This operation emphasizes the 

contribution of nodes with higher scores as stated in Eq. (42), where 𝐻𝑝𝑜𝑜𝑙 denotes pooled feature matrix 

containing features of selected nodes, 𝐻[𝑖𝑑𝑥] addresses features of the top-𝑘 nodes, and 𝑠[𝑖𝑑𝑥] represents 

scores of the top-𝑘 nodes, used as weights. 

𝐻𝑝𝑜𝑜𝑙 = 𝐻[𝑖𝑑𝑥] ⋅ 𝑠[𝑖𝑑𝑥]   (42) 

Moreover, the structure of the graph is updated by extracting the subgraph corresponding to the selected 

nodes. The new adjacency matrix is computed by slicing the original adjacency matrix 𝐴 based on the 

indices of the top-𝑘 nodes as signified in Eq. (43), where 𝐴𝑝𝑜𝑜𝑙 addresses pooled adjacency matrix to 

represent the connections between the selected nodes, and 𝐴[𝑖𝑑𝑥, 𝑖𝑑𝑥] states submatrix of the original 

adjacency matrix that contains rows and columns corresponding to the top-𝑘 nodes. 

𝐴𝑝𝑜𝑜𝑙 = 𝐴[𝑖𝑑𝑥, 𝑖𝑑𝑥]    (43) 

3.5.Integration Layer 

It combines outputs from a GNN and a TCN using an attention mechanism to dynamically weigh the 

importance of the graph-based and temporal-based features. The goal of this step is to compute attention 
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scores that reflect the relative importance of the GNN-derived features (𝑔) and TCN-derived features (𝑡) 

for the task at hand. The attention scores are then used to create a fused representation. Separate attention 

scores are computed for graph features (𝑔) and temporal features (𝑡) using learned weight matrices. The 

attention scores are based on the concatenated vector of 𝑔 and 𝑡 as addressed in Eq. (44), where 𝛼𝑔, 𝛼𝑡 

state attention scores for the graph and temporal features respectively, 𝜎 indicates sigmoid activation 

function, 𝑊𝑔, 𝑊𝑡 refer to learnable weight matrices for graph and temporal attention, respectively, and 

[𝑔‖𝑡] denotes concatenation of graph (𝑔) and temporal (𝑡) features. 

𝛼𝑔 = 𝜎(𝑊𝑔[𝑔‖𝑡]), 𝛼𝑡 = 𝜎(𝑊𝑡[𝑔‖𝑡])  (44) 

The fused representation 𝑓 is computed by applying the attention scores (𝛼𝑔 , 𝛼𝑡) as weights to the graph 

and temporal features, respectively, and combining them as specified in Eq. (46), where 𝑓 refers to fused 

output combining graph and temporal features, and ⊙ addresses element-wise multiplication. 

𝑓 = 𝛼𝑔 ⊙ 𝑔 + 𝛼𝑡 ⊙ 𝑡   (45) 

To ensure that the fused output 𝑓 is well-normalized and contains meaningful feature representations, it 

undergoes refinement using a combination of an MLP and layer normalization as shown in Eq. (47), in 

which 𝑦 represents final output from the integration layer, 𝑀𝐿𝑃(𝑓) signifies an MLP that projects the 

fused output 𝑓 into a new feature space, and 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚 is applied to ensure consistent scaling and 

smooth optimization. 

𝑦 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑀𝐿𝑃(𝑓))   (46) 

At this point, the FC layer outputs a scalar representation. The FC layer is designed with non-linear 

activations between the input 𝑦 and the final output layer for better feature transformation as shown in Eq. 

(48), and (49). 

z1 = ReLU(W1y + b1)   (47) 

z′ = softmax(Wfcz1 + bfc)   (48) 

Here, W1 ∈ Rdhidden×dinput , and Dhidden is the size of the hidden layer. 

Moreover, dropout layers are added between the FC layers to regularize the model and prevent overfitting 

as mentioned in Eq. (50). 

z1 = Dropout(p)(ReLU(W1y + b1)) (49) 

Table 2 represents the parameter settings of suggested CompQual-TGNet. Figure 3 shows the architecture 

of implemented CompQual-TGNet. 

 

Table 2. Parameter Settings of Proposed CompQual-TGNet 

Component Parameter Value 

Input Settings Batch Size 32  
Sequence Length 128  
Number of Features per Time 

Step 

16 

Multi-Resolution Temporal 

Block 

Dilation Rate (d) {1, 2, 4, 8} 

 
Kernel Size (k) {3, 5, 7, 9} 

 
Number of Filters 64  
Attention Mechanism Scaled Dot-Product Attention 
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Weighted Summation Weights 

(wd) 

Initialized to 1.0 and updated 

during training 

Adaptive Temporal 

Attention 

Query Vector Weights (Wq, bq) Randomly initialized, updated 

during training  
Temporal Window 10  
Activation Function ReLU  

Scaling Factor (√dk) √64 

Feature Gating Mechanism Update Gate Weights (Wz, bz) Randomly initialized 
 

Reset Gate Weights (Wr, br) Randomly initialized 
 

Hidden State Weights (Wh, bh) Randomly initialized 
 

Activation Function Tanh 

GNN Architecture Number of Attention Heads 8  
Learnable Weight Matrix (Wk) Randomly initialized 

 
Edge Feature Update Weights 

(MLP) 

2-layer MLP, hidden size 128 

 
Sparsity Mask Ratio 0.3  
Gumbel Softmax Temperature 0.5 

Hierarchical Graph Pooling Pooling Ratio 0.5  
Number of Selected Nodes (k) Calculated based on input graph 

size  
MLP for Node Importance Scores 2-layer MLP, hidden size 128  
Activation Function for Scores Softmax 

Integration Layer Graph Feature Weight Matrix 

(Wg) 

Randomly initialized 

 
Temporal Feature Weight Matrix 

(Wt) 

Randomly initialized 

 
Attention Mechanism Activation 

Function 

Sigmoid 

 
Output Feature Dimension 128 
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Figure 3. Architecture of Implemented CompQual-TGNet 

 
4. Simulation Results 

4.1. Simulation Setup 

The proposed oil and gas production prediction model through the addressed CompQual-TGNet was 

developed via Python on Intel core® i5 processor @2.6GHz, 16 GB RAM, 64-bit OS. The data used in 

this study are utilized from Oil and Gas Production Data in https://www.kaggle.com/datasets/banlevan/oil-

and-gas-production-data?select=oil-and-gas-summary-production-data-1967-1999-1.csv, and Oil and 

Gas dataset in https://www.kaggle.com/datasets/raspberrypie/oil-and-gas. The performance of the 

proposed CompQual-TGNet is verified with the baseline models such as TCN [30], GNN [31], and recent 

DL models like Multi-Adaptive GNN with TCN (MAGNN-TCN) [32], and GNN-based Adaptive 

Predictive Generative Adversarial Network (GAPGAN) [33]. 

4.2. Algorithmic Analysis 

The proposed oil and gas production prediction model and the attained results are given in this section. 

Here, the performance metrics used to evaluate the model performance are Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), Mean Absolute Percentage Error 

(MAPE), and Coefficient of Determination (R2). Figure 4 illustrates the performance of proposed 

CompQual-TGNet over other existing DL models. Across all evaluation metrics, the proposed model 

delivers surpassing performance against existing methods TCN, GNN, MAGNN-TCN and GAPGAN. 

https://www.ijfmr.com/
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The proposed CompQual-TGNet model delivers optimal predictive results by attaining RMSE of 0.0136 

and MSE of 0.0264 together with MAE of 0.0138 and MAPE of 0.0154. The proposed model achieves 

exceptional performance in R2 terms (0.9867) and best data fit capability for capturing variances. The 

proposed CompQual-TGNet model demonstrates the fastest testing time at 3.12 ms which confirms its 

capability to operate efficiently in real-time applications. The proposed solution demonstrates superior 

robustness and efficiency because of its complete system enhancement. 

Figure 4. Performance of Proposed CompQual-TGNet Model over Existing Models for (a) RMSE, (b) 

MSE, (c) MAE, (d) MAPE, and (e) R2 

 

  

(a) (b) 

  

(c) (d) 
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(e) 

 

Table 3. Performance of Proposed CompQual-TGNet Over Other Existing Models for Various 

Metrics 

Model RMSE MSE MAE MAPE R² Testing Time (ms) 

TCN [30] 0.0819 0.0606 0.0528 0.0422 0.9593 5.16 

GNN [31] 0.0623 0.0521 0.0429 0.0368 0.9688 6.04 

MAGNN-TCN [32] 0.0776 0.0621 0.0695 0.0679 0.9494 6.54 

GAPGAN [33] 0.0786 0.0594 0.0749 0.0428 0.9319 5.48 

Proposed CompQual-TGNet 0.0136 0.0264 0.0138 0.0154 0.9867 3.12 

 

Table 3 demonstrates the performance of proposed CompQual-TGNet over other existing models for 

various metrics. The proposed model delivers significantly better performance than TCN, GNN, 

MAGNN-TCN, and GAPGAN during all evaluation metrics assessments. The proposed CompQual-

TGNet model delivers optimal prediction accuracy based on its lowest RMSE of 0.0136 together with 

MSE of 0.0264, MAE of 0.0138 and MAPE of 0.0154. The proposed CompQual-TGNet model achieves 

maximum data variance capture by producing an R2 value of 0.9867 along with the highest goodness-of-

fit among models tested. Tests run on the proposed model show the fastest execution times at 3.12 ms 

which demonstrates its suitability for applications requiring live processing. The proposed approach 

demonstrates both enhanced robustness and operational efficiency through this extensive enhancement. 

 

Table 4. Ablation Study 

Methods RMSE MAE MSE MAPE R2 

Without Multi-Resolution Temporal Block (Module 1) 0.0298 0.0225 0.094 0.0195 0.952 

Without Adaptive Temporal Attention (Module 2) 0.029 0.022 0.084 0.0162 0.95 

Without Feature Gating Mechanism (Module 3) 0.0295 0.0225 0.087 0.0158 0.935 

Without GNN Architecture (Module 4) 0.0312 0.0238 0.097 0.017 0.91 

Without Hierarchical Graph Pooling (Module 5) 0.0305 0.023 0.093 0.0165 0.925 

Proposed CompQual-TGNet 0.0136 0.0204 0.0138 0.0154 0.9867 
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Table 4 explains the role of each module in the proposed CompQual-TGNet. In the context of the ablation 

study, the performance of the proposed CompQual-TGNet model is evaluated by sequentially removing 

key modules to observe their impact on different performance metrics: RMSE, MAE, MSE, MAPE, and 

R2. All model components contribute to performance outcomes as confirmed by the best results achieved 

by the complete model. Without the multi-resolution temporal block (module 1), the model's RMSE 

increases slightly to 0.0298, and other metrics like MSE and MAE also show moderate degradation. When 

adaptive temporal attention (module 2) and feature gating mechanism (module 3) are excluded the 

performance metrics demonstrate deterioration as RMSE reaches 0.029 and RMSE reaches 0.0295. The 

model demonstrates decreased prediction accuracy and limited generalization when GNN architecture 

(module 4) and hierarchical graph pooling (module 5) are removed because both metrics increase to 0.0312 

and 0.0305. The CompQual-TGNet model achieves the best performance due to its complete 

implementation resulting in an RMSE of 0.0136, MSE of 0.0138 and an exceptional R² of 0.9867. 

 

Figure 5. Performance of Proposed CompQual-TGNet with respect to Each Module in the 

Proposed Architecture for (a) RMSE, (b) MSE, (c) MAE, (d) MAPE, and (e) 𝐑𝟐 

  

(a) (b) 

  

(c) (d) 
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(e) 

 

Figure 5 demonstrates the graphical representation of role of each module in the proposed CompQual-

TGNet. The RMSE, MSR and R2 metrics experience performance declines due to each component 

removal within the ablation study. The CompQual-TGNet model proves the significance of its components 

by reaching its highest performance through intact functionality. Without the critical modules that include 

Multi-Resolution Temporal Block and GNN Architecture model accuracy declines while error metrics 

rise. Figure 6 delivers the loss graph of proposed CompQual-TGNet. 

 

Figure 6. Loss Graph of Proposed CompQual-TGNet Model 

 
5. Conclusion 

This study presented CompQual-TGNet, a new hybrid DL framework that analyzed the operations of oil 

and gas businesses using competency metrics and quality indicators. By merging GNN and TCN 

technologies, the system examined multiple operational datasets and produced accurate predictions 

regarding future performance. The preprocessing system established strong data linkages by standardizing 

values using Z-score normalization, detecting outliers using IQR, and matching temporal data patterns 

across several inputs. The system also employed sophisticated feature engineering methods to enhance 

outputs, such as feature extraction and fusion. The proposed method used MVMF to extract common latent 

features and CDAM to discover correlations. Furthermore, DFIN was utilized to discover the optimal 

feature combinations across datasets, and the cross-attention fusion layer was used to create context-aware 
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feature representations. Additionally, this study combined TCN for tracking operational history and long-

term temporal patterns with GNN for mapping cross-dependencies between personnel capabilities and 

operational components. Weighting and attention modules were used by the adaptive fusion layer to bring 

these models together and produce precise forecasts based on domain-relevant predictions. Thus, this 

proposed model accomplished better results and proved its competence in predicting oil and gas 

production. In future, the research will upgrade CompQual-TGNet to analyze big operational datasets 

from multiple oil and gas companies. Besides, real-time input data feeds plus automatic model updates 

are included to make this system respond better to changing operational conditions. Finding better ways 

to optimize the model through advanced algorithms and adding external factors will help make better 

operational decisions. 
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