International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160

Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com

(0.1)

Coefficient Estimates on A New Subclasses of Bi-Univalent Functions Defined Using Opoola Differential Operator and Associated with Quasi-Subordination

Ranjan S. Khatu¹, Uday H. Naik², Amol B. Patil³

¹Dept. of Mathematics, Arts, Commerce and Science College, Lanja-416701, India. ²Dept. of Mathematics, Willingdon College, Sangli-416415, India ³Dept. of First Year Engineering, AISSMS's, College of Engineering, Pune-411001, India

Abstract

In this research paper, we investigate new subclasses $\mathcal{R}_{\Sigma}^{\mu,q,m}(\lambda,\phi,\gamma,\beta,t)$ and $\mathcal{UAR}_{\Sigma}^{\lambda,q,m}(\phi,\gamma,\beta,t)$ of bi-univalent functions defined on the unit disk Δ in the complex plane using Opoola differential operator and quasi-subordination. Further, we find upper bounds of $|a_2|$ and $|a_3|$ for functions in these new subclasses.

Keywords: Analytic function, Bi-univalent function, Quasi-subordination, Subordination, Univalent function.

Mathematics Subject Classification: 30C45, 30C50, 30C75.

1. Introduction

Let \mathcal{A} be the class of functions in the form

$$h(z) = z + \sum_{j=2}^{\infty} a_j z^j$$

which are analytic in the open unit disk $\Delta = \{z : z \in \mathbb{C}, |z| < 1\}$.

Let *S* denote the class of functions of \mathcal{A} which are univalent in Δ . As each $h \in S$ is univalent in Δ , h^{-1} exists but it may not be defined on entire Δ . Here the Koebe-one-quarter theorem ([5]) ensures that, the image of every $h \in S$ contains a disk of radius $\frac{1}{4}$. Therefore, for any $h \in S$ having Taylor's series expansion mentioned in equation (0.1) has inverse function g which is given by

$$g(w) = w - a_2 w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \cdots$$
(0.2)

where $|w| < r_0(h)$ and $r_0(h) \ge \frac{1}{4}$. A function $h \in \mathcal{A}$ is said to be bi-univalent in Δ if both h and h^{-1} are univalent in Δ . The class of all bi-univalent functions defined in Δ is denoted by Σ .

Lewin([8]) invested the class Σ of bi-univalent functions and proved that $|a_2| < 1.5$ for the functions in Σ . Later, Brannan and Clunie([3]) conjectured that $|a_2| \le \sqrt{2}$. Also, Netanyahu([11]) proved that $max_{h\in\Sigma} |a_2| = \frac{4}{3}$. Still the coefficient bounds for $|a_3|, |a_4|, ...$ is an open problem.

The study of subclasses of bi-univalent functions was continued by Brannan and Taha([4]) (see also

([19])) by introducing certain subclasses of bi-univalent functions $S^*(\alpha)$ and $K(\alpha)$ ($\alpha \in [0,1)$) of starlike and convex functions of order α respectively. Srivastava et al.([18]) also contributed by introducing certain subclasses of bi-univalent functions and found out some initial coefficient bounds. Ma and Minda([9]) introduced the classes:

$$S^*(\phi) = \left\{ h \in S : \frac{zh'(z)}{h(z)} \prec \phi(z) \right\}$$

and

$$K(\phi) = \left\{ h \in S \colon 1 + \frac{zh''(z)}{h'(z)} \prec \phi(z) \right\},\$$

where ϕ be an analytic functions with positive real part in the unit disk Δ , $\phi'(0) > 1$, $\phi(0) = 1$ and maps Δ on to a region which is starlike with respect to 1 and symmetric with respect to the real axis. These classes include several well known subclasses of starlike and convex functions respectively as special cases.

The next important concept is quasi-subordination which was introduced by Robertson([16]) in 1970. An analytic function h is quasi-subordination to another analytic function ϕ if there are two analytic functions ψ and ω with conditions w(0) = 0, $|\psi(z)| \le 1$ and |w(z)| < 1 such that $h(z) = \phi(w(z))\psi(z)$ and it is denoted by

$$h(z) \prec_q \phi(z); \quad (z \in \Delta).$$

For $\psi(z) = 1$, we get $h(z) \prec \phi(z)$ in Δ (see ([10]) and ([15]) for quasi-subordination in details). In this investigation, we assume that

$$\begin{split} \psi(z) &= b_0 + b_1 z + b_2 z^2 + \cdots, \quad (z \in \Delta, |\psi(z)| \le 1) \\ \text{and } \phi(z) \text{ is an analytic function in } \Delta \text{ with form:} \\ \phi(z) &= 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots \quad (c_1 > 0). \end{split}$$
(0.3)

In [12], Opoola introduced the following differential operator as follows:

$$D^m(\gamma,\beta,t):\mathcal{A}\to\mathcal{A}$$

 $D^{0}(\gamma,\beta,t)h(z) = h(z),$ $D^{1}(\gamma,\beta,t)h(z) = zD_{t}h(z) = tzh'(z) - z(\beta - \gamma)t + [1 + (\beta - \gamma - 1)t]h(z),$ $D^{m}(\gamma,\beta,t)h(z) = zD_{t}(D^{m-1}(\gamma,\beta,t)h(z)), m \in \mathbb{N}$ (0.5) If h(z) is given by (0.1), then from (0.5), we see that

$$D^{m}(\gamma,\beta,t)h(z) = z + \sum_{j=2}^{\infty} [1 + (j + \beta - \gamma - 1)t]^{m} a_{j} z^{j}$$

where, $t \ge 0, \gamma \in [0, \beta]$ and $m \in \mathbb{N} \cup \{0\}$.

Remark 0.1 (i) When $t = \lambda$, $\beta = \gamma$, $D^n(\gamma, \gamma, \lambda)h(z) = D^n_{\lambda}h(z)$ is the Al-Oboudi Differential operator in [2].

(ii) When $t = 1, \beta = \gamma, D^n(\gamma, \gamma, 1)h(z) = D^nh(z)$ is the Salagean Differential operator introduced in [17].

We use the following lemma to derive our results.

Lemma 0.2 [14] If \mathcal{P} denotes the family of all analytic functions in Δ with positive real part and $p \in \mathcal{P}$

with $p(z) = 1 + c_1 z + c_2 z^2 + \cdots (z \in \Delta)$ then $|c_j| \le 2$ for each j.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS $\mathcal{R}_{\Sigma}^{\mu,q,m}(\lambda,\phi,\gamma,\beta,t)$

Definition 0.3 A function $h \in \Sigma$ given by (0.1) is said to be in class $\mathcal{R}_{\Sigma}^{\mu,q,m}(\lambda, \phi, \gamma, \beta, t)$ if the following quasi-subordination holds:

$$\begin{bmatrix} \lambda(D^m(\gamma,\beta,t)h(z))' \left(\frac{D^m(\gamma,\beta,t)h(z)}{z}\right)^{\mu-1} + (1-\lambda)\left(\frac{D^m(\gamma,\beta,t)h(z)}{z}\right)^{\mu} - 1 \end{bmatrix} \prec_q (\phi(z) - 1) \qquad (z \in \Delta)$$

and

$$\begin{bmatrix} \lambda(D^m(\gamma,\beta,t)g(w))' \left(\frac{D^m(\gamma,\beta,t)g(w)}{w}\right)^{\mu-1} + (1-\lambda) \left(\frac{D^m(\gamma,\beta,t)g(w)}{w}\right)^{\mu} - 1 \end{bmatrix} \leq_q (\phi(w) - 1) \quad (w \in \Delta)$$

where $\lambda \in [1, \infty)$ and the functions g and ϕ are given by (0.2) and (0.4) respectively. Note that, for $\mu = 0$ and m = 0, we get the class $\mathcal{R}_{\Sigma}^{0,q,0}(\lambda, \phi, \gamma, \beta, t)$ which was introduced and studied by A.B.Patil and U.H. Naik ([13]).

Theorem 0.4 Let h given by (0.1) be in the class
$$\mathcal{R}_{\Sigma}^{\mu,q,m}(\lambda,\phi,\gamma,\beta,t)$$
. Then
 $|a_{2}| \leq min \left\{ \sqrt{\frac{2|b_{0}|(c_{1}+|c_{2}-c_{1}|)}{(\mu+1)(2\lambda+\mu)(1+(1+\beta-\gamma)t)^{2m}}}, \frac{|b_{0}|c_{1}}{(\lambda+\mu)(1+(1+\beta-\gamma)t)^{m}} \right\}$
(0.6)
and
 $|a_{3}| \leq min \left\{ \frac{|b_{0}|^{2}c_{1}^{2}}{(\lambda+\mu)^{2}(1+(2+\beta-\gamma)t)^{m}} + \frac{c_{1}(|b_{0}|+|b_{1}|)}{(2\lambda+\mu)(1+(1+\beta-\gamma)t)^{m}}, \frac{2|b_{0}|(c_{1}+|c_{2}-c_{1}|)+(\mu+1)|b_{1}|c_{1}}{(\mu+1)(2\lambda+\mu)(1+(1+\beta-\gamma)t)^{m}} \right\}.$
(0.7)

Proof. Since $h \in \mathcal{R}_{\Sigma}^{\mu,q,m}(\lambda,\phi,\gamma,\beta,t)$, there exist two analytic functions $u, v: \Delta \to \Delta$ with |u(z)| < 1, |v(w)| < 1, u(0) = v(0) = 0 and a function ψ defined by (0.3) satisfies:

$$\left[\lambda \left(D^{m}(\gamma,\beta,t)h(z)\right)'^{\left(\frac{D^{m}(\gamma,\beta,t)h(z)}{z}\right)^{\mu-1}} + (1-\lambda)\left(\frac{D^{m}(\gamma,\beta,t)h(z)}{z}\right)^{\mu} - 1\right] = [\phi(u(z)) - 1]\psi(z) \qquad (0.8)$$

and

$$\left[\lambda \left(D^{m}(\gamma,\beta,t)g(w)\right)'^{\left(\frac{D^{m}(\gamma,\beta,t)g(w)}{w}\right)^{\mu-1}} + (1-\lambda)\left(\frac{D^{m}(\gamma,\beta,t)g(w)}{w}\right)^{\mu} - 1\right] = [\phi(v(w)) - 1]\psi(w). \quad (0.9)$$

Consider functions p and q such that

$$p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + \sum_{j=1}^{\infty} d_j z^j$$

equivalently

$$u(z) = \frac{p(z)-1}{p(z)+1} = \frac{1}{2} \left[d_1 z + \left(d_2 - \frac{d_1^2}{2} \right) z^2 + \cdots \right]$$
(0.10)
and

International Journal for Multidisciplinary Research (IJFMR)

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

$$q(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + \sum_{j=1}^{\infty} e_j w^j$$

equivalently

$$v(w) = \frac{q(w)-1}{q(w)+1} = \frac{1}{2} \left[e_1 w + \left(e_2 - \frac{e_1^2}{2} \right) w^2 + \cdots \right].$$
(0.11)

Clearly p and q are both analytic in Δ with p(0) = q(0) = 1 and have their positive real part in Δ . Now using equations (0.10) and (0.11), R.H.S. of equations (0.8) and (0.9) can be expressed as

$$[\phi(u(z)) - 1]\psi(z) = \frac{b_0 c_1 d_1}{2} z + \left\{\frac{b_0 c_1 d_2}{2} - \frac{b_0 c_1 d_1^2}{4} + \frac{b_0 c_2 d_1^2}{4} + \frac{b_1 c_1 d_1}{2}\right\} z^2 + \cdots$$
(0.12)
and

$$[\phi(v(w)) - 1]\psi(w) = \frac{b_0c_1e_1}{2}w + \left\{\frac{b_0c_1e_2}{2} - \frac{b_0c_1e_1^2}{4} + \frac{b_0c_2e_1^2}{4} + \frac{b_1c_1e_1}{2}\right\}w^2 + \cdots$$
(0.13)

By considering functions h and g given by equations (0.1) and (0.2), L.H.S. of equations (0.8) and (0.9) can be expressed as

$$\left[\lambda(D^m(\gamma,\beta,t)h(z))'\left(\frac{D^m(\gamma,\beta,t)h(z)}{z}\right)^{\mu-1} + (1-\lambda)\left(\frac{D^m(\gamma,\beta,t)h(z)}{z}\right)^{\mu} - 1\right]$$
$$= (\mu+\lambda)(1+(1+\beta-\gamma)t)^m a_2 z$$

+
$$\left[(2\lambda + \mu)(1 + (2 + \beta - \gamma)t)^m a_3 + (\mu - 1)(\lambda + \frac{\mu}{2})a_2^2(1 + (1 + \beta - \gamma)t)^{2m} \right] z^2 + \cdots$$

(0.14)

and

$$\begin{split} \left[\lambda(D^{m}(\gamma,\beta,t)g(w))'\left(\frac{D^{m}(\gamma,\beta,t)g(w)}{w}\right)^{\mu-1} + (1-\lambda)\left(\frac{D^{m}(\gamma,\beta,t)g(w)}{w}\right)^{\mu} - 1\right] \\ &= -(\lambda+\mu)(1+(1+\beta-\gamma)t)^{m}a_{2}w \\ + \left[-(2\lambda+\mu)(1+(2+\beta-\gamma)t)^{m}a_{3} + (3+\mu)\left(\lambda+\frac{\mu}{2}\right)a_{2}^{2}(1+(1+\beta-\gamma)t)^{2m}\right]w^{2} + \cdots . \end{split}$$
(0.15)

Using equations (0.12), (0.13), (0.14) and (0.15) and equating coefficients of like powers of z and w (only first two terms), we get

$$(1 + (1 + \beta - \gamma)t)^{m}(\mu + \lambda)a_{2} = \frac{b_{0}c_{1}d_{1}}{2}, \qquad (0.16)$$

$$(2\lambda + \mu)(1 + (2 + \beta - \gamma)t)^{m}a_{3} + (\mu - 1)\left(\lambda + \frac{\mu}{2}\right)(1 + (1 + \beta - \gamma)t)^{2m}a_{2}^{2} = \frac{b_{0}c_{1}d_{2}}{2} - \frac{b_{0}c_{1}d_{1}^{2}}{4} + \frac{b_{0}c_{2}d_{1}^{2}}{4} + \frac{b_{1}c_{1}d_{1}}{2},$$

$$(0.17)$$

$$-(\lambda + \mu)(1 + (1 + \beta - \gamma)t)^{m}a_{2} = \frac{b_{0}c_{1}e_{1}}{2}$$
(0.18)
and
$$-(2\lambda + \mu)(1 + (2 + \beta - \gamma)t)^{m}a_{3} + (3 + \mu)(\lambda + \frac{\mu}{2})(1 + (1 + \beta - \gamma)t)^{2m}a_{2}^{2} = \frac{b_{0}c_{1}e_{2}}{2} - \frac{b_{0}c_{1}e_{2}}{2}$$

$$-(2\lambda + \mu)(1 + (2 + \beta - \gamma)t)^{m}a_{3} + (3 + \mu)\left(\lambda + \frac{\mu}{2}\right)(1 + (1 + \beta - \gamma)t)^{2m}a_{2}^{2} = \frac{b_{0}c_{1}e_{2}}{2} - \frac{b_{0}c_{1}e_{1}^{2}}{4} + \frac{b_{0}c_{2}e_{1}^{2}}{4} + \frac{b_{1}c_{1}e_{1}}{2}.$$
(0.19)

IJFMR250137322

Website: www.ijfmr.com E-ISSN: 2582-2160 Email: editor@ijfmr.com From equations (0.16) and (0.18), we get $d_1 = -e_1$ (0.20)and $8(\lambda + \mu)^2 (1 + (1 + \beta - \gamma)t)^{2m} a_2^2 = b_0^2 c_1^2 (d_1^2 + e_1^2)$ (0.21)By adding (0.17) and (0.19) in light of (0.20), we get $2(1 + (1 + \beta - \gamma)t)^{2m}(\mu + 1)(2\lambda + \mu)a_2^2 = b_0c_1(d_2 + e_2) + b_0d_1^2(c_2 - c_1).$ (0.22)By applying lemma (0.2) to equations (0.21) and (0.22), we get the desire result (0.6). By subtracting (0.19) from (0.17) in light of (0.20), we get $a_3 = \frac{(1+(1+\beta-\gamma)t)^{2m}}{(1+(2+\beta-\gamma)t)^m} a_2^2 + \frac{b_0 c_1 (d_2 - e_2) + 2b_1 c_1 d_1}{4(1+(2+\beta-\gamma)t)^m (2\lambda+\mu)}.$ (0.23)Using equations (0.21) and (0.23), we get $a_3 = \frac{b_0^2 c_1^2 (d_1^2 + e_1^2)}{8(1 + (2 + \beta - \gamma)t)^m (\lambda + \mu)^2} + \frac{b_0 c_1 (d_2 - e_2) + 2b_1 c_1 d_1}{4(1 + (2 + \beta - \gamma)t)^m (2\lambda + \mu)^2}$ (0.24)Using equations (0.22) and (0.23), we get $a_{3} = \frac{b_{0}c_{1}(d_{2}+e_{2})+b_{0}d_{1}^{2}(c_{2}-c_{1})}{2(1+(2+\beta-\gamma)t)^{m}(\mu+1)(2\lambda+\mu)} + \frac{b_{0}c_{1}(d_{2}-e_{2})+2b_{1}c_{1}d_{1}}{4(1+(2+\beta-\gamma)t)^{m}(2\lambda+\mu)}.$ (0.25)

By applying lemma (0.2) to equations (0.24) and (0.25), we get the desire result (0.7). This completes the proof of Theorem (0.4).

We observed that, by setting $\mu = 1$ and m = 0 in above theorem, we get the result obtained by Amol Patil and Uday Naik ([13]) as follows:

Corollary 0.5 Let h(z) given by (0.1) be in class $\mathcal{R}_{\Sigma}^{1,q,0}(\lambda, \phi)$. Then

$$|a_2| \le \min\left\{\frac{|b_0|c_1}{(\lambda+1)}, \sqrt{\frac{2|b_0|(c_1+|c_2-c_1|)}{2\lambda+1}}\right\}$$

and

$$|a_3| \leq \min\left\{\frac{|b_0|^2 c_1^2}{(\lambda+1)^2} + \frac{(|b_0|+|b_1|)c_1}{2\lambda+1}, \frac{|b_0|(c_1+|c_2-c_1|)+|b_1|c_1}{2\lambda+1}\right\}.$$

By setting $\psi(z) = 1$ in corollary 0.5, result of quasi-subordination converts in to following result of subordination.

Corollary 0.6 Let the function h(z) given by (0.1) be in the class $\mathcal{R}_{\Sigma}(\lambda, \phi)$. Then

$$|a_2| \le min\left\{\frac{c_1}{(\lambda+1)}, \sqrt{\frac{c_1+|c_2-c_1|}{2\lambda+1}}\right\}$$

and

$$|a_3| \le min\left\{\frac{c_1^2}{(\lambda+1)^2} + \frac{c_1}{2\lambda+1}, \frac{2c_1 + |c_2 - c_1|}{2\lambda+1}\right\}.$$

By setting $\lambda = 1$ in corollary (0.6), we get the following corollary.

Corollary 0.7 Let the function h(z) given by (0.1) be in the class $\mathcal{R}_{\Sigma}(\varphi)$. Then

$$|a_2| \le min\left\{\frac{c_1}{2}, \sqrt{\frac{c_1 + |c_2 - c_1|}{3}}\right\}$$

and

$$|a_3| \le min\left\{\frac{c_1^2}{4} + \frac{c_1}{3}, \frac{2c_1 + |c_2 - c_1|}{3}\right\}.$$

Remark 0.8 Corollaries (0.6) and (0.7) are the improvements of the estimates obtained in Theorem 2.1 given by Kumar et al. ([7]) and Theorem 2.1 given by Ali et al. ([1]), respectively.

Remark 0.9 If we set

$$\phi(z) = \frac{1 + (1 - 2\beta)z}{1 - z} = 1 + 2(1 - \beta)z + 2(1 - \beta)z^2 + \dots; \quad (\beta \in [0, 1))$$

in corollaries (0.6) and (0.7) then we get the improvements of the estimates obtained in Theorem 3.2 given by Fransin and Aouf ([6]) and Theorem 2 given by Srivastava et al. ([18]), respectively.

3. COEFFICIENT ESTIMATES FOR THE FUNCTION CLASS $\mathcal{UAR}^{\lambda,q,m}_{\Sigma}(\phi,\gamma,\beta,t)$

Definition 0.10 A function $h \in \Sigma$ given by (0.1) is said to be in the class $\mathcal{UAR}^{\lambda}_{\Sigma}(\phi)$ if the following quasi-subordination holds:

$$\left(\frac{z(D^m(\gamma,\beta,t)f(z))'}{D^m(\gamma,\beta,t)f(z)}\right)^{\lambda} \left(1 + \frac{z(D^m(\gamma,\beta,t)f(z))''}{(D^m(\gamma,\beta,t)f(z))'}\right)^{1-\lambda} - 1 \prec_q \phi(z) - 1 \quad (z \in \Delta)$$

and

$$\left(\frac{z(D^m(\gamma,\beta,t)g(w))'}{D^m(\gamma,\beta,t)g(w)}\right)^{\lambda} \left(1 + \frac{w(D^m(\gamma,\beta,t)g(w))''}{(D^m(\gamma,\beta,t)g(w))'}\right)^{1-\lambda} - 1 \prec_q \phi(w) - 1 \quad (w \in \Delta)$$

where g and ϕ are the functions given by (0.2) and (0.4) and $\lambda \ge 0$.

Theorem 0.11 Let h(z) given by (0.1) be in the class $\mathcal{UAR}^{\lambda}_{\Sigma}(\varphi)$. Then

$$|a_{2}| \leq \min\left\{\frac{|b_{0}|c_{1}}{|2-\lambda|(1+(1+\beta-\gamma)t)^{m}}, \sqrt{\frac{2|b_{0}|(c_{1}+|c_{2}-c_{1}|)}{|\lambda^{2}-3\lambda+4|(1+(1+\beta-\gamma)t)^{2m}}}\right\}$$
(0.26)

and

$$|a_3| \le \frac{(|b_0|+|b_1|)c_1}{2|3-2\lambda|(1+(2+\beta-\gamma)t)^m} + \min\left\{\frac{|b_0|^2c_1^2}{(2-\lambda)^2(1+(2+\beta-\gamma)t)^m}, \frac{2|b_2|(c_1+|c_2-c_1|)}{|\lambda^2-3\lambda+4|(1+(2+\beta-\gamma)t)^m}\right\}. (0.27)$$

Proof. Since $h \in \mathcal{UAR}^{\lambda}_{\Sigma}(\phi)$, there exist two analytic functions $u, v: \Delta \to \Delta$ with |u(z)| < 1, |v(w)| < 1

1, u(0) = v(0) = 0 and a function ψ defined by (0.3) satisfies:

$$\left(\frac{z(D^{m}(\gamma,\beta,t)f(z))'}{D^{m}(\gamma,\beta,t)f(z)}\right)^{\lambda} \left(1 + \frac{z(D^{m}(\gamma,\beta,t)f(z))''}{(D^{m}(\gamma,\beta,t)f(z))'}\right)^{1-\lambda} - 1 = [\phi(u(z)) - 1]\psi(z)$$
(0.28) and

$$\left(\frac{z(D^m(\gamma,\beta,t)g(w))'}{D^m(\gamma,\beta,t)g(w)}\right)^{\lambda} \left(1 + \frac{w(D^m(\gamma,\beta,t)g(w))''}{(D^m(\gamma,\beta,t)g(w))'}\right)^{1-\lambda} - 1 = [\phi(v(w)) - 1]\psi(w).$$
(0.29)
Consider functions m and g such that

Consider functions p and q such that

$$p(z) = \frac{1 + u(z)}{1 - u(z)} = 1 + \sum_{j=1}^{\infty} d_j z^j$$

equivalently

$$u(z) = \frac{p(z)-1}{p(z)+1} = \frac{1}{2} \left[d_1 z + \left(d_2 - \frac{d_1^2}{2} \right) z^2 + \cdots \right]$$
(0.30)
and

$$q(w) = \frac{1 + v(w)}{1 - v(w)} = 1 + \sum_{j=1}^{\infty} e_j w^j$$

equivalently

$$v(w) = \frac{q(w)-1}{q(w)+1} = \frac{1}{2} \left[e_1 w + \left(e_2 - \frac{e_1^2}{2} \right) w^2 + \cdots \right].$$
(0.31)

Clearly p and q are analytic in Δ with p(0) = q(0) = 1 and have their positive real part in Δ . Now using equations (0.30) and (0.31), R.H.S. of equations (0.28) and (0.29) can be expressed as $[\phi(u(z)) - 1]\psi(z) = \frac{b_0c_1d_1}{2}z + \left\{\frac{b_0c_1d_2}{2} - \frac{b_0c_1d_1^2}{4} + \frac{b_0c_2d_1^2}{4} + \frac{b_1c_1d_1}{2}\right\}z^2 + \cdots$ (0.32) and

$$[\phi(v(w)) - 1]\psi(w) = \frac{b_0c_1e_1}{2}w + \left\{\frac{b_0c_1e_2}{2} - \frac{b_0c_1e_1^2}{4} + \frac{b_0c_2e_1^2}{4} + \frac{b_1c_1e_1}{2}\right\}w^2 + \cdots$$
 (0.33)
By considering functions *h* and *g* given by equations (0.1) and (0.2), L.H.S. of equations (0.28) and

(0.29) can be expressed as

$$\left(\frac{z(D^{m}(\gamma,\beta,t)h(z))'}{D^{m}(\gamma,\beta,t)h(z)}\right)^{\lambda} \left(1 + \frac{z(D^{m}(\gamma,\beta,t)h(z))''}{(D^{m}(\gamma,\beta,t)h(z))'}\right)^{1-\lambda} - 1$$

$$= (2-\lambda)(1+(1+\beta-\gamma)t)^{m}a_{2}z + \left[(6-4\lambda)(1+(2+\beta-\gamma)t)^{m}a_{3} + \left(\frac{\lambda^{2}+5\lambda-8}{2}\right)(1+(1+\beta-\gamma)t)^{2m}a_{2}^{2}\right]z$$

$$(0.34)$$

and

$$\left(\frac{z(D^{m}(\gamma,\beta,t)g(w))^{\prime}}{D^{m}(\gamma,\beta,t)g(w)} \right)^{\lambda} \left(1 + \frac{w(D^{m}(\gamma,\beta,t)g(w))^{\prime\prime}}{(D^{m}(\gamma,\beta,t)g(w))^{\prime}} \right)^{1-\lambda} - 1$$

$$= -(2-\lambda)(1+(1+\beta-\gamma)t)^{m}a_{2}w + \left[\left(\frac{\lambda^{2}-11\lambda+16}{2} \right)(1+(1+\beta-\gamma)t)^{2m}a_{2}^{2} + (4\lambda-6)(1+(2+\beta-\gamma)t)^{m}a_{2}w + (0.35) \right]^{1-\lambda}$$

$$(0.35)$$

Using equations (0.32), (0.33), (0.34) and (0.35) and equating coefficients of like powers of z and w (only first two terms), we get

$$(2-\lambda)(1+(1+\beta-\gamma)t)^m a_2 = \frac{b_0 c_1 d_1}{2},$$
(0.36)

$$(6-4\lambda)(1+(2+\beta-\gamma)t)^{m}a_{3} + \left(\frac{\lambda^{2}+5\lambda-8}{2}\right)(1+(1+\beta-\gamma)t)^{2m}a_{2}^{2} = \frac{b_{0}c_{1}d_{2}}{2} - \frac{b_{0}c_{1}d_{1}^{2}}{4} + \frac{b_{0}c_{2}d_{1}^{2}}{4} + \frac{b_{0}c_$$

International Journal for Multidisciplinary Research (IJFMR)

IJFMR	E-ISSN: 2582-2160 • Website: wv	<u>vw.ijfmr.com</u> •	Email: editor@ijfmr.com
$\frac{b_1c_1d_1}{2},$		(0.37)	
$-(2-\lambda)(1$	$(1 + \beta - \gamma)t)^m a_2 = \frac{b_0 c_1 e_1}{2}$		(0.38)
and			
$\left(\frac{\lambda^2 - 11\lambda + 16}{2}\right)$	$(1 + (1 + \beta - \gamma)t)^{2m}a_2^2 + (4\lambda - 6)(2)^{2m}a_2^2$	$1+(2+\beta-\gamma)t)^m a_3$	$=\frac{b_0c_1e_2}{2}-\frac{b_0c_1e_1^2}{4}+\frac{b_0c_2e_1^2}{4}+$
$\frac{b_1c_1e_1}{2}.$		(0.39)	
From equation	ions (0.36) and (0.38), we get		
$d_1 = -e_1$			(0.40)
and			
$8(2-\lambda)^2(2)$	$1 + (1 + \beta - \gamma)t)^{2m}a_2^2 = b_0^2c_1^2(d_1^2 + e$	$(2^{2}_{1}).$	(0.41)
By adding (0.37) and (0.39) in light of (0.40), we get	et	
$2(\lambda^2-3\lambda-$	$+ 4)(1 + (1 + \beta - \gamma)t)^{2m}a_2^2 = b_0c_1(d)$	$(a_2 + e_2) + b_0 e_1^2 (c_2 - c_2)$	L). (0.42)
By applying lemma (0.2) to equations (0.41) and (0.42) , we get the desire result (0.26) .			
By subtracti	ing (0.39) from (0.37) in light of (0.40),	we get	
$a_3 = \frac{(1+(1+))^2}{(1+(2+))^2}$	$\frac{\beta - \gamma(t)^{2m}}{(\beta - \gamma)t)^m} a_2^2 + \frac{b_0 c_1 (d_2 - e_2) + 2b_1 c_1 e_1}{8(3 - 2\lambda)(1 + (2 + \beta - \gamma)t)^m}.$		(0.43)
Using equat	ions (0.41) and (0.43), we get		
$a_3 = \frac{b_0^2 c_1^2 (d_1^2 + e_1^2)}{8(2 - \lambda)^2 (1 + (2 + \beta - \gamma)t)^m} + \frac{b_0 c_1 (d_2 - e_2) + 2b_1 c_1 e_1}{8(3 - 2\lambda)(1 + (2 + \beta - \gamma)t)^m}.$			(0.44)
Using equat	ions (0.22) and (0.23), we get		
$a_3 = \frac{b_0 c_1(a_3)}{2(\lambda^2 - 3)}$	$\frac{b_{2}+e_{2}+b_{0}e_{1}^{2}(c_{2}-c_{1})}{\lambda+4)(1+(2+\beta-\gamma)t)^{m}} + \frac{b_{0}c_{1}(d_{2}-e_{2})+2b_{1}c_{1}e_{1}}{8(3-2\lambda)(1+(2+\beta-\gamma)t)}$	<u>m</u> .	(0.45)
р <u>і</u>		0.45) (1.1.1.)	

By applying lemma (0.2) to equations (0.44) and (0.45), we get the desire result (0.27). This completes the proof of Theorem (0.11).

4. References

- 1. Ali R.M., Lee S.K., V.Ravichandran and S.Supramaniam, *Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions*, Appl. Math. Lett., **25**, (2012), 344-351.
- 2. Al-Oboudi F.M., *On univalent functions defined by a S`al`agean differential operator*, Int. J. Math. Math. Sci. 2004 (2004), 1429–1436.
- 3. Brannan D.A. and Clunie J.G. (Eds.), *Aspects of Contemporary Complex Analysis* (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979), Academic Press, New York and London, (1980).
- 4. Brannan D.A. and Taha T.S., *On some classes of bi-univalent functions*, Studia Univ. Babes-Bolyai Math, **31**(2), (1986), 70-77.
- 5. Duren P.L., *Univalent Functions*, Grundlehren der Mathematischen Wissenschaften, Springer, New York, (1983).
- 6. Frasin B.A. and Aouf M.K., *New subclasses of bi-univalent functions*, Appl. Math. Lett., **24**, (2011), 1569-1573.
- 7. Kumar S.S., V.Kumar and V.Ravichandran, *Estimates for the initial coefficients of bi-univalent functions*, Tamsui Oxf. J. Inf. and Math. Sci., **29**(4), (2013), 487-504.
- 8. Lewin M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18, (1967),

63-68.

- 9. Ma W.C. and Minda D., A unified treatment of some special classses of univalent functions, Proceedings of the conference on Complex Analysis, Tianjin, (1992), 157-169.
- 10. Mohd M.H. and Darus M., *Fekete Szego problems for Quasi-subordination classes*, Abst. Appl. Anal., Article ID 192956, (2012), 1-14.
- 11. Netanyahu E., The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., textbf32, (1969), 100-112.
- Opoola T.O., On a subclass of univalent functions defined by a generalized differential operator, Int. J. Math. Anal. 11 (2017), no.18, 869–876.
- Patil A.B. and Naik U.H., Estimates on Initial Coefficients of Certain Sunclasses of Bi-Univalent Functions Associated with Quasi-Subordination, Glabal Journal of Mathematical Analysis, 5(1), (2017), 6-10.
- 14. Pommerenke Ch., Univalent Functions, Vandenhoeck and Rupercht, Gottingen, (1975).
- 15. Ren F.Y., Owa S. and Fukui S., Some inequalities on quasi-subordination functions, Bull. Aust. Math. Soc., **43**(2), (1991), 317-324.
- 16. Robertson M.S., *Quasi-subordination and coefficient conjecture*, Bull. Amer. Math. Soc., **76**, (1970), 1-9.
- 17. Salagean G.S., *Subclasses of Univalent Functions*, Complex Anal. Fifth Roman. Seminar, part I (Brucharest, 1983), Lecture Notes in Mathematics, vol. 1013, Springer, Berlin, 1983, pp 362–372.
- 18. Srivastava H.M., A.K.Mishra and P.Gochhayat, *Certain subclasses of analytic and bi-univalent functions*, Appl. Math. Lett., (23), (2010), 1188-1192.
- 19. Taha T.S., *Topics in Univalent Function Theory*, Ph.D. Thesis, University of London, London, (1981).