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Abstract 

In this research paper, we investigate new subclasses ℛ∑
𝜇,𝑞,𝑚

(𝜆, 𝜙, 𝛾, 𝛽, 𝑡) and 𝒰𝒜ℛ∑
𝜆,𝑞,𝑚(𝜙, 𝛾, 𝛽, 𝑡) of 

bi-univalent functions defined on the unit disk Δ  in the complex plane using Opoola differential 

operator and quasi-subordination. Further, we find upper bounds of |𝑎2| and |𝑎3| for functions in these 

new subclasses. 
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1. Introduction 

Let 𝒜 be the class of functions in the form 

ℎ(𝑧) = 𝑧 + ∑∞
𝑗=2 𝑎𝑗𝑧𝑗        (0.1) 

which are analytic in the open unit disk Δ = {𝑧: 𝑧 ∈ ℂ, |𝑧| < 1}. 

Let 𝑆 denote the class of functions of 𝒜 which are univalent in Δ. As each ℎ ∈ 𝑆 is univalent in Δ, 

ℎ−1 exists but it may not be defined on entire Δ. Here the Koebe-one-quarter theorem ([5]) ensures that, 

the image of every ℎ ∈ 𝑆 contains a disk of radius 
1

4
.Therefore, for any ℎ ∈ 𝑆 having Taylor’s series 

expansion mentioned in equation (0.1) has inverse function 𝑔 which is given by 

𝑔(𝑤) = 𝑤 − 𝑎2𝑤2 + (2𝑎2
2 − 𝑎3)𝑤3 − (5𝑎2

3 − 5𝑎2𝑎3 + 𝑎4)𝑤4 + ⋯  (0.2) 

where |𝑤| < 𝑟0(ℎ) and 𝑟0(ℎ) ≥
1

4
. A function ℎ ∈ 𝒜 is said to be bi-univalent in Δ if both ℎ and ℎ−1 

are univalent in Δ. The class of all bi-univalent functions defined in Δ is denoted by ∑ . 

Lewin([8]) invested the class ∑  of bi-univalent functions and proved that |𝑎2| < 1.5 for the functions 

in ∑ . Later, Brannan and Clunie([3]) conjectured that |𝑎2| ≤ √2. Also, Netanyahu([11]) proved that 

𝑚𝑎𝑥ℎ∈∑ |𝑎2| =
4

3
. Still the coefficient bounds for |𝑎3|, |𝑎4|, … is an open problem. 

The study of subclasses of bi-univalent functions was continued by Brannan and Taha([4]) (see also 
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([19])) by introducing certain subclasses of bi-univalent functions 𝑆∗(𝛼) and 𝐾(𝛼)  (𝛼 ∈ [0,1))  of 

starlike and convex functions of order 𝛼  respectively. Srivastava et al.([18]) also contributed by 

introducing certain subclasses of bi-univalent functions and found out some initial coefficient bounds. 

Ma and Minda([9]) introduced the classes: 

𝑆∗(𝜙) = {ℎ ∈ 𝑆:
𝑧ℎ′(𝑧)

ℎ(𝑧)
≺ 𝜙(𝑧)} 

and 

𝐾(𝜙) = {ℎ ∈ 𝑆: 1 +
𝑧ℎ′′(𝑧)

ℎ′(𝑧)
≺ 𝜙(𝑧)}, 

where 𝜙 be an analytic functions with positive real part in the unit disk Δ, 𝜙′(0) > 1, 𝜙(0) = 1 and 

maps Δ on to a region which is starlike with respect to 1 and symmetric with respect to the real axis. 

These classes include several well known subclasses of starlike and convex functions respectively as 

special cases. 

The next important concept is quasi-subordination which was introduced by Robertson([16]) in 1970. 

An analytic function ℎ is quasi-subordination to another analytic function 𝜙 if there are two analytic 

functions 𝜓  and 𝜔  with conditions 𝑤(0) = 0, |𝜓(𝑧)| ≤ 1  and |𝑤(𝑧)| < 1  such that ℎ(𝑧) =

𝜙(𝑤(𝑧))𝜓(𝑧) and it is denoted by 

ℎ(𝑧) ≺𝑞 𝜙(𝑧);    (𝑧 ∈ Δ). 

For 𝜓(𝑧) = 1, we get ℎ(𝑧) ≺ 𝜙(𝑧) in Δ (see ([10]) and ([15]) for quasi-subordination in details). 

In this investigation, we assume that 

𝜓(𝑧) = 𝑏0 + 𝑏1𝑧 + 𝑏2𝑧2 + ⋯,    (𝑧 ∈ Δ, |𝜓(𝑧)| ≤ 1)    (0.3) 

and 𝜙(𝑧) is an analytic function in Δ with form: 

𝜙(𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧2 + 𝑐3𝑧3 + ⋯    (𝑐1 > 0).     (0.4) 

 

In [12], Opoola introduced the following differential operator as follows: 

𝐷𝑚(𝛾, 𝛽, 𝑡): 𝒜 → 𝒜 

𝐷0(𝛾, 𝛽, 𝑡)ℎ(𝑧) = ℎ(𝑧), 

𝐷1(𝛾, 𝛽, 𝑡)ℎ(𝑧) = 𝑧𝐷𝑡ℎ(𝑧) = 𝑡𝑧ℎ′(𝑧) − 𝑧(𝛽 − 𝛾)𝑡 + [1 + (𝛽 − 𝛾 − 1)𝑡]ℎ(𝑧), 

𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧) = 𝑧𝐷𝑡(𝐷𝑚−1(𝛾, 𝛽, 𝑡)ℎ(𝑧)), 𝑚 ∈ ℕ     (0.5) 

If ℎ(𝑧) is given by (0.1), then from (0.5), we see that 

𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧) = 𝑧 + ∑

∞

𝑗=2

[1 + (𝑗 + 𝛽 − 𝛾 − 1)𝑡]𝑚𝑎𝑗𝑧𝑗 

where, 𝑡 ≥ 0, 𝛾 ∈ [0, 𝛽] and 𝑚 ∈ ℕ ∪ {0}. 

 

Remark 0.1 (i) When t = λ, β = γ, Dn(γ, γ, λ)h(z) = Dλ
nh(z) is the Al-Oboudi Differential operator in 

[2]. 

(ii) When t = 1, β = γ, Dn(γ, γ, 1)h(z) = Dnh(z) is the Salagean Differential operator introduced in 

[17]. 

 

We use the following lemma to derive our results. 

Lemma 0.2 [14] If 𝒫 denotes the family of all analytic functions in Δ with positive real part and p ∈ 𝒫 
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with p(z) = 1 + c1z + c2z2 + ⋯ (z ∈ Δ) then |cj| ≤ 2 for each j. 

 

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 𝓡∑
𝝁,𝒒,𝒎

(𝝀, 𝝓, 𝜸, 𝜷, 𝒕) 

Definition 0.3 A function h ∈ ∑  given by (0.1) is said to be in class ℛ∑
μ,q,m

(λ, ϕ, γ, β, t)  if the 

following quasi-subordination holds: 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧))′ (
𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧)

𝑧
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧)

𝑧
)

𝜇

− 1] ≺𝑞 (𝜙(𝑧) − 1)        (𝑧

∈ Δ) 

and 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))′ (
𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤)

𝑤
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤)

𝑤
)

𝜇

− 1] ≺𝑞 (𝜙(𝑤)

− 1)        (𝑤 ∈ Δ) 

where 𝜆 ∈ [1, ∞) and the functions 𝑔 and 𝜙 are given by (0.2) and (0.4) respectively. 

Note that, for 𝜇 = 0 and 𝑚 = 0, we get the class ℛ∑
0,𝑞,0(𝜆, 𝜙, 𝛾, 𝛽, 𝑡) which was introduced and studied 

by A.B.Patil and U.H. Naik ([13]). 

 

Theorem 0.4  Let h given by (0.1) be in the class ℛ∑
μ,q,m

(λ, ϕ, γ, β, t). Then 

|𝑎2| ≤ 𝑚𝑖𝑛 {√
2|𝑏0|(𝑐1+|𝑐2−𝑐1|)

(𝜇+1)(2𝜆+𝜇)(1+(1+𝛽−𝛾)𝑡)2𝑚 ,
|𝑏0|𝑐1

(𝜆+𝜇)(1+(1+𝛽−𝛾)𝑡)𝑚}   (0.6) 

and 

|𝑎3| ≤ 𝑚𝑖𝑛 {
|𝑏0|2𝑐1

2

(𝜆+𝜇)2(1+(2+𝛽−𝛾)𝑡)𝑚 +
𝑐1(|𝑏0|+|𝑏1|)

(2𝜆+𝜇)(1+(1+𝛽−𝛾)𝑡)𝑚 ,
2|𝑏0|(𝑐1+|𝑐2−𝑐1|)+(𝜇+1)|𝑏1|𝑐1

(𝜇+1)(2𝜆+𝜇)(1+(1+𝛽−𝛾)𝑡)𝑚
}. (0.7) 

 

 

Proof. Since ℎ ∈ ℛ∑
𝜇,𝑞,𝑚

(𝜆, 𝜙, 𝛾, 𝛽, 𝑡) , there exist two analytic functions 𝑢, 𝑣: Δ → Δ  with |𝑢(𝑧)| <

1, |𝑣(𝑤)| < 1, 𝑢(0) = 𝑣(0) = 0 and a function 𝜓 defined by (0.3) satisfies: 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧))
′(

𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧)

𝑧
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧)

𝑧
)

𝜇

− 1] = [𝜙(𝑢(𝑧)) − 1]𝜓(𝑧) (0.8) 

and 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))
′(

𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤)

𝑤
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤)

𝑤
)

𝜇

− 1] = [𝜙(𝑣(𝑤)) − 1]𝜓(𝑤). (0.9) 

Consider functions 𝑝 and 𝑞 such that 

𝑝(𝑧) =
1 + 𝑢(𝑧)

1 − 𝑢(𝑧)
= 1 + ∑

∞

𝑗=1

𝑑𝑗𝑧𝑗  

equivalently 

𝑢(𝑧) =
𝑝(𝑧)−1

𝑝(𝑧)+1
=

1

2
[𝑑1𝑧 + (𝑑2 −

𝑑1
2

2
) 𝑧2 + ⋯ ]     (0.10) 

and 
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𝑞(𝑤) =
1 + 𝑣(𝑤)

1 − 𝑣(𝑤)
= 1 + ∑

∞

𝑗=1

𝑒𝑗𝑤𝑗 

equivalently 

𝑣(𝑤) =
𝑞(𝑤)−1

𝑞(𝑤)+1
=

1

2
[𝑒1𝑤 + (𝑒2 −

𝑒1
2

2
) 𝑤2 + ⋯ ].     (0.11) 

Clearly 𝑝 and 𝑞 are both analytic in Δ with 𝑝(0) = 𝑞(0) = 1 and have their positive real part in Δ. 

Now using equations (0.10) and (0.11), R.H.S. of equations (0.8) and (0.9) can be expressed as 

[𝜙(𝑢(𝑧)) − 1]𝜓(𝑧) =
𝑏0𝑐1𝑑1

2
𝑧 + {

𝑏0𝑐1𝑑2

2
−

𝑏0𝑐1𝑑1
2

4
+

𝑏0𝑐2𝑑1
2

4
+

𝑏1𝑐1𝑑1

2
} 𝑧2 + ⋯ (0.12) 

and 

[𝜙(𝑣(𝑤)) − 1]𝜓(𝑤) =
𝑏0𝑐1𝑒1

2
𝑤 + {

𝑏0𝑐1𝑒2

2
−

𝑏0𝑐1𝑒1
2

4
+

𝑏0𝑐2𝑒1
2

4
+

𝑏1𝑐1𝑒1

2
} 𝑤2 + ⋯. (0.13) 

By considering functions ℎ and 𝑔 given by equations (0.1) and (0.2), L.H.S. of equations (0.8) and 

(0.9) can be expressed as 

 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧))′ (
𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧)

𝑧
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾, 𝛽, 𝑡)ℎ(𝑧)

𝑧
)

𝜇

− 1]

= (𝜇 + 𝜆)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2𝑧 

 

+ [(2𝜆 + 𝜇)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (𝜇 − 1) (𝜆 +
𝜇

2
) 𝑎2

2(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚] 𝑧2 + ⋯  

 (0.14) 

and 

[𝜆(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))′ (
𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤)

𝑤
)

𝜇−1

+ (1 − 𝜆) (
𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤)

𝑤
)

𝜇

− 1]

                                                                                                                    = −(𝜆 + 𝜇)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2𝑤

 

+ [−(2𝜆 + 𝜇)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (3 + 𝜇) (𝜆 +
𝜇

2
) 𝑎2

2(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚] 𝑤2 + ⋯.             

(0.15) 

Using equations (0.12), (0.13), (0.14) and (0.15) and equating coefficients of like powers of 𝑧 and 𝑤 

(only first two terms), we get 

(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚(𝜇 + 𝜆)𝑎2 =
𝑏0𝑐1𝑑1

2
,      (0.16) 

 

(2𝜆 + 𝜇)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (𝜇 − 1) (𝜆 +
𝜇

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2 =
𝑏0𝑐1𝑑2

2
−

𝑏0𝑐1𝑑1
2

4
+

𝑏0𝑐2𝑑1
2

4
+

𝑏1𝑐1𝑑1

2
,          (0.17) 

 

−(𝜆 + 𝜇)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2 =
𝑏0𝑐1𝑒1

2
       (0.18) 

and 

−(2𝜆 + 𝜇)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (3 + 𝜇) (𝜆 +
𝜇

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2 =
𝑏0𝑐1𝑒2

2
−

𝑏0𝑐1𝑒1
2

4
+

𝑏0𝑐2𝑒1
2

4
+

𝑏1𝑐1𝑒1

2
.          (0.19) 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250137322 Volume 7, Issue 1, January-February 2025 5 

 

From equations (0.16) and (0.18), we get 

𝑑1 = −𝑒1          (0.20) 

and 

8(𝜆 + 𝜇)2(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2
2 = 𝑏0

2𝑐1
2(𝑑1

2 + 𝑒1
2)    (0.21) 

By adding (0.17) and (0.19) in light of (0.20), we get 

2(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚(𝜇 + 1)(2𝜆 + 𝜇)𝑎2
2 = 𝑏0𝑐1(𝑑2 + 𝑒2) + 𝑏0𝑑1

2(𝑐2 − 𝑐1). (0.22) 

By applying lemma (0.2) to equations (0.21) and (0.22), we get the desire result (0.6). 

By subtracting (0.19) from (0.17) in light of (0.20), we get 

𝑎3 =
(1+(1+𝛽−𝛾)𝑡)2𝑚

(1+(2+𝛽−𝛾)𝑡)𝑚 𝑎2
2 +

𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑑1

4(1+(2+𝛽−𝛾)𝑡)𝑚(2𝜆+𝜇)
.     (0.23) 

Using equations (0.21) and (0.23), we get 

𝑎3 =
𝑏0

2𝑐1
2(𝑑1

2+𝑒1
2)

8(1+(2+𝛽−𝛾)𝑡)𝑚(𝜆+𝜇)2 +
𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑑1

4(1+(2+𝛽−𝛾)𝑡)𝑚(2𝜆+𝜇)
.     (0.24) 

Using equations (0.22) and (0.23), we get 

𝑎3 =
𝑏0𝑐1(𝑑2+𝑒2)+𝑏0𝑑1

2(𝑐2−𝑐1)

2(1+(2+𝛽−𝛾)𝑡)𝑚(𝜇+1)(2𝜆+𝜇)
+

𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑑1

4(1+(2+𝛽−𝛾)𝑡)𝑚(2𝜆+𝜇)
.    (0.25) 

By applying lemma (0.2) to equations (0.24) and (0.25), we get the desire result (0.7). This completes 

the proof of Theorem (0.4). 

We observed that, by setting 𝜇 = 1 and 𝑚 = 0 in above theorem, we get the result obtained by Amol 

Patil and Uday Naik ([13]) as follows: 

 

Corollary 0.5  Let h(z) given by (0.1) be in class ℛ∑
1,q,0

(λ, ϕ). Then 

|𝑎2| ≤ 𝑚𝑖𝑛 {
|𝑏0|𝑐1

(𝜆 + 1)
, √

2|𝑏0|(𝑐1 + |𝑐2 − 𝑐1|)

2𝜆 + 1
} 

and 

|𝑎3| ≤ 𝑚𝑖𝑛 {
|𝑏0|2𝑐1

2

(𝜆 + 1)2
+

(|𝑏0| + |𝑏1|)𝑐1

2𝜆 + 1
,
|𝑏0|(𝑐1 + |𝑐2 − 𝑐1|) + |𝑏1|𝑐1

2𝜆 + 1
}. 

 

By setting 𝜓(𝑧) = 1 in corollary 0.5, result of quasi-subordination converts in to following result of 

subordination. 

 

Corollary 0.6  Let the function h(z) given by (0.1) be in the class ℛ∑ (λ, ϕ). Then 

|𝑎2| ≤ 𝑚𝑖𝑛 {
𝑐1

(𝜆 + 1)
, √

𝑐1 + |𝑐2 − 𝑐1|

2𝜆 + 1
} 

and 

|𝑎3| ≤ 𝑚𝑖𝑛 {
𝑐1

2

(𝜆 + 1)2
+

𝑐1

2𝜆 + 1
,
2𝑐1 + |𝑐2 − 𝑐1|

2𝜆 + 1
}. 

 

 

By setting 𝜆 = 1 in corollary (0.6), we get the following corollary. 
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Corollary 0.7  Let the function h(z) given by (0.1) be in the class ℛ∑ (ϕ). Then 

|𝑎2| ≤ 𝑚𝑖𝑛 {
𝑐1

2
, √

𝑐1 + |𝑐2 − 𝑐1|

3
} 

and 

|𝑎3| ≤ 𝑚𝑖𝑛 {
𝑐1

2

4
+

𝑐1

3
,
2𝑐1 + |𝑐2 − 𝑐1|

3
}. 

 

 

 

Remark 0.8 Corollaries (0.6) and (0.7) are the improvements of the estimates obtained in Theorem 2.1 

given by Kumar et al. ([7]) and Theorem 2.1 given by Ali et al. ([1]), respectively. 

 

 

Remark 0.9 If we set 

𝜙(𝑧) =
1 + (1 − 2𝛽)𝑧

1 − 𝑧
= 1 + 2(1 − 𝛽)𝑧 + 2(1 − 𝛽)𝑧2 + ⋯ ;    (𝛽 ∈ [0,1)) 

in corollaries (0.6) and (0.7) then we get the improvements of the estimates obtained in Theorem 3.2 

given by Fransin and Aouf ([6]) and Theorem 2 given by Srivastava et al. ([18]), respectively. 

 

 

3. COEFFICIENT ESTIMATES FOR THE FUNCTION CLASS 𝓤𝓐𝓡∑
𝝀,𝒒,𝒎

(𝝓, 𝜸, 𝜷, 𝒕) 

Definition 0.10 A function h ∈ ∑  given by (0.1) is said to be in the class 𝒰𝒜ℛ∑
λ (ϕ) if the following 

quasi-subordination holds: 

(
𝑧(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑓(𝑧))′

𝐷𝑚(𝛾, 𝛽, 𝑡)𝑓(𝑧)
)

𝜆

(1 +
𝑧(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑓(𝑧))′′

(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑓(𝑧))′
)

1−𝜆

− 1 ≺𝑞 𝜙(𝑧) − 1    (𝑧 ∈ Δ) 

and 

(
𝑧(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))′

𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤)
)

𝜆

(1 +
𝑤(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))′′

(𝐷𝑚(𝛾, 𝛽, 𝑡)𝑔(𝑤))′
)

1−𝜆

− 1 ≺𝑞 𝜙(𝑤) − 1    (𝑤 ∈ Δ) 

where 𝑔 and 𝜙 are the functions given by (0.2) and (0.4) and 𝜆 ≥ 0. 

 

 

Theorem 0.11  Let h(z) given by (0.1) be in the class 𝒰𝒜ℛ∑
λ (ϕ). Then 

|𝑎2| ≤ 𝑚𝑖𝑛 {
|𝑏0|𝑐1

|2−𝜆|(1+(1+𝛽−𝛾)𝑡)𝑚
, √

2|𝑏0|(𝑐1+|𝑐2−𝑐1|)

|𝜆2−3𝜆+4|(1+(1+𝛽−𝛾)𝑡)2𝑚
}    (0.26) 

and 

|𝑎3| ≤
(|𝑏0|+|𝑏1|)𝑐1

2|3−2𝜆|(1+(2+𝛽−𝛾)𝑡)𝑚 + 𝑚𝑖𝑛 {
|𝑏0|2𝑐1

2

(2−𝜆)2(1+(2+𝛽−𝛾)𝑡)𝑚 ,
2|𝑏2|(𝑐1+|𝑐2−𝑐1|)

|𝜆2−3𝜆+4|(1+(2+𝛽−𝛾)𝑡)𝑚
}. (0.27) 

 

 

Proof. Since ℎ ∈ 𝒰𝒜ℛ∑
𝜆 (𝜙), there exist two analytic functions 𝑢, 𝑣: Δ → Δ with |𝑢(𝑧)| < 1, |𝑣(𝑤)| <
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1, 𝑢(0) = 𝑣(0) = 0 and a function 𝜓 defined by (0.3) satisfies: 

(
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)𝑓(𝑧))′

𝐷𝑚(𝛾,𝛽,𝑡)𝑓(𝑧)
)

𝜆

(1 +
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)𝑓(𝑧))′′

(𝐷𝑚(𝛾,𝛽,𝑡)𝑓(𝑧))′
)

1−𝜆

− 1 = [𝜙(𝑢(𝑧)) − 1]𝜓(𝑧)  (0.28) 

and 

(
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′

𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤)
)

𝜆

(1 +
𝑤(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′′

(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′
)

1−𝜆

− 1 = [𝜙(𝑣(𝑤)) − 1]𝜓(𝑤). (0.29) 

Consider functions 𝑝 and 𝑞 such that 

𝑝(𝑧) =
1 + 𝑢(𝑧)

1 − 𝑢(𝑧)
= 1 + ∑

∞

𝑗=1

𝑑𝑗𝑧𝑗  

equivalently 

𝑢(𝑧) =
𝑝(𝑧)−1

𝑝(𝑧)+1
=

1

2
[𝑑1𝑧 + (𝑑2 −

𝑑1
2

2
) 𝑧2 + ⋯ ]     (0.30) 

and 

𝑞(𝑤) =
1 + 𝑣(𝑤)

1 − 𝑣(𝑤)
= 1 + ∑

∞

𝑗=1

𝑒𝑗𝑤𝑗 

equivalently 

𝑣(𝑤) =
𝑞(𝑤)−1

𝑞(𝑤)+1
=

1

2
[𝑒1𝑤 + (𝑒2 −

𝑒1
2

2
) 𝑤2 + ⋯ ].     (0.31) 

Clearly 𝑝 and 𝑞 are analytic in Δ with 𝑝(0) = 𝑞(0) = 1 and have their positive real part in Δ. 

Now using equations (0.30) and (0.31), R.H.S. of equations (0.28) and (0.29) can be expressed as 

[𝜙(𝑢(𝑧)) − 1]𝜓(𝑧) =
𝑏0𝑐1𝑑1

2
𝑧 + {

𝑏0𝑐1𝑑2

2
−

𝑏0𝑐1𝑑1
2

4
+

𝑏0𝑐2𝑑1
2

4
+

𝑏1𝑐1𝑑1

2
} 𝑧2 + ⋯ (0.32) 

and 

[𝜙(𝑣(𝑤)) − 1]𝜓(𝑤) =
𝑏0𝑐1𝑒1

2
𝑤 + {

𝑏0𝑐1𝑒2

2
−

𝑏0𝑐1𝑒1
2

4
+

𝑏0𝑐2𝑒1
2

4
+

𝑏1𝑐1𝑒1

2
} 𝑤2 + ⋯. (0.33) 

By considering functions ℎ and 𝑔 given by equations (0.1) and (0.2), L.H.S. of equations (0.28) and 

(0.29) can be expressed as 

(
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧))′

𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧)
)

𝜆

(1 +
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧))′′

(𝐷𝑚(𝛾,𝛽,𝑡)ℎ(𝑧))′
)

1−𝜆

− 1

= (2 − 𝜆)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2𝑧 + [(6 − 4𝜆)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (
𝜆2+5𝜆−8

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2] 𝑧2 + ⋯

            (0.34) 

and 

(
𝑧(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′

𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤)
)

𝜆

(1 +
𝑤(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′′

(𝐷𝑚(𝛾,𝛽,𝑡)𝑔(𝑤))′
)

1−𝜆

− 1

= −(2 − 𝜆)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2𝑤 + [(
𝜆2−11𝜆+16

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2 + (4𝜆 − 6)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3] 𝑤2 + ⋯ .

             (0.35) 

 

Using equations (0.32), (0.33), (0.34) and (0.35) and equating coefficients of like powers of 𝑧 and 𝑤 

(only first two terms), we get 

(2 − 𝜆)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2 =
𝑏0𝑐1𝑑1

2
,      (0.36) 

 

(6 − 4𝜆)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 + (
𝜆2+5𝜆−8

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2 =
𝑏0𝑐1𝑑2

2
−

𝑏0𝑐1𝑑1
2

4
+

𝑏0𝑐2𝑑1
2

4
+
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𝑏1𝑐1𝑑1

2
,         (0.37) 

 

−(2 − 𝜆)(1 + (1 + 𝛽 − 𝛾)𝑡)𝑚𝑎2 =
𝑏0𝑐1𝑒1

2
      (0.38) 

and 

(
𝜆2−11𝜆+16

2
) (1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2

2 + (4𝜆 − 6)(1 + (2 + 𝛽 − 𝛾)𝑡)𝑚𝑎3 =
𝑏0𝑐1𝑒2

2
−

𝑏0𝑐1𝑒1
2

4
+

𝑏0𝑐2𝑒1
2

4
+

𝑏1𝑐1𝑒1

2
.         (0.39) 

From equations (0.36) and (0.38), we get 

𝑑1 = −𝑒1          (0.40) 

and 

8(2 − 𝜆)2(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2
2 = 𝑏0

2𝑐1
2(𝑑1

2 + 𝑒1
2).    (0.41) 

By adding (0.37) and (0.39) in light of (0.40), we get 

2(𝜆2 − 3𝜆 + 4)(1 + (1 + 𝛽 − 𝛾)𝑡)2𝑚𝑎2
2 = 𝑏0𝑐1(𝑑2 + 𝑒2) + 𝑏0𝑒1

2(𝑐2 − 𝑐1). (0.42) 

By applying lemma (0.2) to equations (0.41) and (0.42), we get the desire result (0.26). 

By subtracting (0.39) from (0.37) in light of (0.40), we get 

𝑎3 =
(1+(1+𝛽−𝛾)𝑡)2𝑚

(1+(2+𝛽−𝛾)𝑡)𝑚 𝑎2
2 +

𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑒1

8(3−2𝜆)(1+(2+𝛽−𝛾)𝑡)𝑚.     (0.43) 

Using equations (0.41) and (0.43), we get 

𝑎3 =
𝑏0

2𝑐1
2(𝑑1

2+𝑒1
2)

8(2−𝜆)2(1+(2+𝛽−𝛾)𝑡)𝑚 +
𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑒1

8(3−2𝜆)(1+(2+𝛽−𝛾)𝑡)𝑚.     (0.44) 

Using equations (0.22) and (0.23), we get 

𝑎3 =
𝑏0𝑐1(𝑑2+𝑒2)+𝑏0𝑒1

2(𝑐2−𝑐1)

2(𝜆2−3𝜆+4)(1+(2+𝛽−𝛾)𝑡)𝑚 +
𝑏0𝑐1(𝑑2−𝑒2)+2𝑏1𝑐1𝑒1

8(3−2𝜆)(1+(2+𝛽−𝛾)𝑡)𝑚.    (0.45) 

By applying lemma (0.2) to equations (0.44) and (0.45), we get the desire result (0.27). This completes 

the proof of Theorem (0.11). 
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