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ABSTRACT 

Statistical methodologies for medical and health research have changed significantly, bringing out the 

dynamics pertaining to disease progression and treatment outcomes. Methods for analyzing survival data 

help understand the changes in subjects over time, including assessing the time to event. However, the 

standard survival models assume only time-invariant relationships, ignoring the clinical variable’s time-

varying nature, which is observed mostly in chronic diseases.  This study addresses this limitation by 

creating a time-varying covariate model for longitudinal data. The model incorporates a shared random-

effects structure for longitudinal and survival components, facilitating correlation between the two 

processes. We develop a Cox proportional hazard model that incorporates a time-varying covariate, 

validate its applicability to data, and compare the predictive accuracy of the proposed model to the 

standard model. Existing data from Performance Monitoring for Action (PMA) was used to compare the 

performance of the standard Cox model with the time-varying covariate model. Key findings indicate that 

age, education, intention of using contraception in the future, and method switching significantly influence 

the risk of discontinuation in contraceptive use. The time-varying model shows the best prediction values 

based on AIC, BIC, and the concordance index, demonstrating the advantage of employing such models 

in reproductive health studies. Informed by the policy implications, there should be some strategies 

targeting younger, educated women, as well as those who will use contraceptives in the future. Other than 

improving the methodologies in the field of survival analysis, this study introduces a more accurate and 

adaptable framework for clinical forecasting, ultimately leading to improved treatment outcomes. 

 

Keywords: Time-varying covariate, Cox proportional hazards model, Contraceptive Discontinuation, 

Family Planning 

 

INTRODUCTION 

In health sciences, survival modelling is an important statistical method employed to analyze the time-to-

event data that is useful in providing predictions on event outcomes which may include death, relapse 

from disease, or dropping out of the treatment program, among others (Chen, G.H., 2024). However, 

survival models like the Cox proportional hazards model often assume constant covariate effects that 

neglect the time-varying nature of many clinical variables (Rizopoulous, et al.,2017). Building upon prior 
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findings on the risk of contraceptive discontinuance among Kenyan women by Baffoe et al. (2024),  who 

employed survival analysis to investigate the determinants of stopping contraception, underscoring 

demographic factors such as education level and age that impact contraceptive use patterns, the purpose 

of this study is to improve the current method of survival analysis of contraceptive use by the use of time-

varying covariates, analysing the longitudinal data of contraceptive use to get a better understanding of 

the factors that contribute to contraceptive continuation and discontinuation.  

The Cox proportional hazard model is a framework on which most survival analysis models are built since 

it identifies the effect of covariates on the hazard function, which is the risk of occurrence of an event at a 

given time. Let T be the random variable representing the time until the event of interest occurs, and let X 

= (𝑋1, 𝑋2, ..., 𝑋𝑝.) be a vector of p covariates or explanatory variables. The Cox model assumes that the 

hazard function ℎ𝑡|𝑥 as the product of a baseline hazard function ℎ0(𝑡) which is independent of covariates, 

and an exponential term dependent on covariates: 

ℎ(𝑡|𝑋) =  ℎ0(𝑡) 𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2+ . . . + 𝛽𝑝𝑥𝑝)   =  ℎ0(𝑡) 𝑒𝑥𝑝(𝛽′𝑿)               (1) 

Where: β′ = (β1 , β2, . . . , βp) represents the vector of regression coefficients associated with the covariates   

X = (x1, x2, .. .  . , xp) represents the values of the vector of explanatory variables for a particular individual. 

The model assumes a constant hazard ratio (HR) over time given as: 

𝐻𝑅 =  
ℎ̂0(𝑡)𝑒𝑥𝑝 (∑ 𝛽𝑖𝑥𝑖

∗)𝑘
𝑖=1

ℎ̂0(𝑡)𝑒𝑥𝑝(∑ 𝛽𝑖𝑥𝑖)𝑘
𝑖=1

= 𝑒𝑥𝑝 [∑ 𝛽𝑖(𝑋𝑖
∗ − 𝑋𝑖)

𝑘

𝑖=1
]                                  (2) 

Where HR > 1, indicates that members of the first group (X∗) are at a high risk of experiencing the event, 

and HR < 1 suggests that members of the second group (X) are at a high risk of experiencing the event 

and HR = 1, indicates equal risk for the event of interest. The parameters   𝛽𝑖 are estimated by a partial 

likelihood function:  

𝐿(𝛽) =  ∏ (
𝑒𝑥𝑝 (𝑿𝑖𝛽)

∑ 𝑒𝑥𝑝 (𝑿𝑗𝛽)𝑗𝜖𝑅(𝑡𝑖)
)                                                                            (3)

𝑛

𝑖=1

 

Where R(ti) denotes the risk set at a time ti,  the log of the partial likelihood gives the sum over the risk 

set, we obtain: 

𝑙(𝛽) = 𝐼𝑛(𝐿(𝛽)) =  ∑ {𝑿𝑖𝛽 − 𝑙𝑛 ( ∑ 𝑒𝑥𝑝 (𝑿𝑘𝛽)

𝑘𝜖𝑅(𝑡(𝑗))

)}

𝑟

𝑗=1

                                (4) 

If tied events exist, then either Breslow's (1974) or Efron's (1977) approximation is employed. The Cox 

model is partly parametric since it does not impose a particular form on the baseline hazard function. It is 

still very flexible, can be easily interpreted, and is also capable of accommodating censored observations 

(Baffoe et al., 2024). 

 

Time-Varying Covariate Models 

A more descriptive analysis of the survival data is provided by the extension of the Cox model that includes 

time-varying covariates. This is achieved by introducing time-varying covariates so that instead of the 

hazard ratios being constant, it is adjusted for the covariates during the study period. For example, the 

flexible parametric survival model introduced by Royston and Parmar (2019) incorporates time-dependent 

effects: 
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𝑙𝑛(𝐻(𝑡; 𝑥)) = 𝑠(ln(𝑡) ; 𝛾0) + 𝑿𝛽 + ∑ 𝑠(ln(𝑡) ; 𝛾𝑘)𝑿𝑘,

𝐽

𝑘=1

                       (5) 

Given H has the cumulative hazard, at the time 𝑡, 𝑠(ln(𝑡) ; 𝛾0) is a restricted cubic spline function of log 

time, K is the number of time-varying covariate effects an𝑠(ln(𝑡) ; 𝛾𝑘) is the spline function for the 𝑘𝑡ℎ 

time-dependent effect. Furthermore, Landmark analysis (Andersen et al., 2013) divides the follow-up 

period into windows to assess covariate impacts. These approaches make the application of the Cox model 

more useful by estimating time evolutions of the hazard ratios and are capable of quantifying time-varying 

effects of the covariates and survival endpoints (Baffoe et al., 2024). 

 

Literature Review 

In a study on contraceptive use and discontinuation conducted on rural women in North-West Tanzania, 

Safari et al. (2019) applied both adjusted and unadjusted multivariable logistic regression models in 

exploring the determinants of contraceptive use and discontinuation. The Cox proportional hazard model 

and life table analysis were used to show individual determinants of discontinuation rates among women 

using contraceptive methods in Tanzania, this approach sets the stage for recognizing the dynamic nature 

of contraceptive use and the necessity of considering time as a critical variable in survival analysis. 

Likewise, Austin et al. (2020) discussed issues related to superior censoring and time-varying covariates, 

and deficiencies of the standard Cox model, along with introducing a Fine-Gray sub-distribution hazard 

regression model for a better estimation of cumulative incidences over time. This approach shows how 

different factors affect both contraceptive use and duration of use but are not always mutually exclusive.  

In a similar line of reasoning, Prol et al. (2024) also examined contraceptive statistics in the US and the 

salient role of social factors and explored the differences in contraceptive methods utilization by age, race, 

education, marital status, and insurance coverage. They also argued that health equity and reproductive 

autonomy are issues that need to be addressed. Together, these studies call for a more comprehensive 

approach to the analysis of contraceptive behavior that employs the time-varying covariates and 

demographic variables and explains how individual and contextual factors work together to shape 

reproductive health decision-making. Baffoe et al (2024) showed that chances of contraceptive dropout 

reduce with increased age whereas, increased levels of education exhibited a higher risk of dropping out. 

These findings underscore the demographic influences on contraceptive dynamics and inform the 

methodological foundation for this study    

Several methods have been proposed for handling flexible trend specifications in the Cox models as a way 

of dealing with non-linear trends, time-varying covariates, and real-time data. Hofner et al. (2011) 

proposed using penalized splines to capture non-linear trends, offering adaptability to diverse data patterns 

with a model: 

ℎ(𝑡|𝑖) = ℎ0(𝑡) exp(𝛽1𝑥𝑖1(𝑡) + 𝛽2𝑥𝑖2(𝑡)+ . . . +𝑓(𝑡𝑖𝑚𝑒))                                                      (6) 

Assuming 𝑓(𝑡𝑖𝑚𝑒) as the non-linear function. Ibrahim et al. (2005) introduced a Bayesian framework for 

time-varying covariates, estimating parameters and their uncertainties through prior distributions but 

facing computational challenges with large datasets:  

ℎ(𝑡|𝑖) =  ℎ0(𝑡) exp(𝛽1𝑥𝑖1(𝑡) + 𝛽2𝑥𝑖2(𝑡)+ . . . )                                                                        (7) 

Henderson et al. (2000) extended the Cox model by including some of the longitudinal data as covariates: 

This approach allows for more meaningful interpretations of survival outcomes. However, the complexity 

of implementation and interpretation is now a stumbling block because the model's sensitivity to 
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assumptions about the relationship between longitudinal data and survival components poses a challenge, 

a robust sensitivity analysis is recommended and different alternatives can be considered. the hazard rate 

within the sub-population defined by the set of covariates is given by 

ℎ(𝑡|𝑖) = ℎ0(𝑡) exp(𝛽1𝑥𝑖1(𝑡) + 𝛽2𝑥𝑖2(𝑡)+ . . . +𝑔(𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎))                           (8) 

Tanner et al. (2023) also introduced dynamic updating with real-time data for better prediction of the scale 

parameter. However, the model faces challenges or becomes limited in practical settings when there is a 

delay or irregular updates. 

ℎ(𝑡|𝑖) = ℎ0(𝑡) exp (∑ 𝛽𝑗

𝑝

𝑗=1

𝑥𝑖𝑗(𝑡) +  𝛿(𝑟𝑒𝑎𝑙 − 𝑡𝑖𝑚𝑒 𝑑𝑎𝑡𝑎))                                                 (9) 

Zhang et al. (2018) proposed a “Group-Based Modeling of Time-Varying Covariates in Cox Models” to 

decrease subjectivity in group levels. This model introduces K groups with different 𝛽𝑗𝑘 structures for 

heterogeneous effects. However, the use of the proposed approach to define groups poses a potential bias 

within the subgroup identification. 

ℎ(𝑡|𝑖) =  ℎ0(𝑡) exp (∑ 𝛽𝑗𝑘𝑥𝑖𝑘(𝑡) + ⋯

𝑘

𝑘=1

)                                                                                  (10)  

Altogether, these models illustrate the strength of advancing Cox modeling to adapt to the various survival 

data structures and the significance of the continual evolution of new methods to confront more 

computational, interpretational, and practical obstacles. Despite the developments that have been made 

concerning non-linear trends, time-varying covariates, and heterogeneity in the survival data, there is an 

important trade-off in terms of computational efficiency, sensitivity to assumptions, and definition of 

subgroups. However, these findings provided the methodological background for this study.  

 

Methodology  

Data Source and Variables 

Baffoe et al. (2024) used data from Performance Monitoring for Action (PMA) surveys to analyze 

contraceptive discontinuation among Kenyan women. The Cox proportional hazard model was used to 

investigate the effects of demographic characteristics (age, education level, marital status, etc) on 

contraceptive use characteristics indicator (ever-used contraceptives). In this study, the time-varying 

nature of components including changes in contraceptive use, perceived intention of using contraceptives, 

and other behavioral characteristics are considered. This introduces a dynamic approach to modeling 

changes in predictor variables, hence a more time-sensitive method of capturing contraceptive user 

behaviors and how they influence the risk of discontinuation. 

A time-varying Cox proportional hazard model is introduced. The model is envisaged to improve the 

ability to explain factors relating to discontinuation and help identify specific ways in which changing 

contraceptive methods and intended future use of contraceptives are likely to impact discontinuation. This 

methodological improvement corresponds to suggestions regarding longitudinal studies to capture the 

complex nature of contraceptive use and its discontinuation. 

Time-varying Variables: The following changing factors concerning contraceptive behavioral patterns: 

change of method, perceived intention to use contraception, and other factors associated with 

contraceptive changes. 

Outcome Variable: Stopping contraception and duration of contraception. 
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Modeling Approaches 

Traditional Cox PH Model: This model looks at the relationship between demographic and contraceptive  

use factors and the risk of dropping out of contraceptive use while ignoring the fact that some of the 

covariates may be time variants.  

ℎ(𝑡|𝑋) =  ℎ0(𝑡) exp(𝛽1𝐴𝑔𝑒 + 𝛽2𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 +  𝛽3𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠

+ 𝛽4𝐸𝑣𝑒𝑟 𝑈𝑠𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒

+ 𝛽5𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑈𝑠𝑖𝑛𝑔 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒)                                   (11) 

ℎ0(𝑡) is the baseline hazard function, 𝛽 represents the coefficient for each variable. 

Proposed Cox PH Model with Time-Varying Covariates: This model uses time-varying covariates like 

switching between users and non-users of contraceptives together with changes in the probability of using 

contraceptives at different times hence fitting the hazard rates more dynamically.  

ℎ(𝑡|𝑋(𝑡)) =  ℎ0(𝑡) exp(𝛽1𝐴𝑔𝑒 + 𝛽2𝐿𝑒𝑣𝑒𝑙 𝑜𝑓 𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 +  𝛽3𝑀𝑎𝑟𝑖𝑡𝑎𝑙 𝑆𝑡𝑎𝑡𝑢𝑠

+ 𝛽4𝐸𝑣𝑒𝑟 𝑈𝑠𝑒 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒 + 𝛽5𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑈𝑠𝑖𝑛𝑔 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒

+ 𝛽6𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑡𝑜 𝑈𝑠𝑒 𝑖𝑛 𝐹𝑢𝑡𝑢𝑟𝑒(𝑡)

+ 𝛽7𝐶ℎ𝑎𝑛𝑔𝑒𝑠 𝑖𝑛 𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑀𝑒𝑡ℎ𝑜𝑑𝑒𝑠(𝑆𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔)(𝑡)

+ 𝛽8𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒 𝑈𝑠𝑒 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠(𝑡))                                                  (12) 

 

Model fit is tested with measures such as the Akaike Information Criterion (AIC), Bayesian Information 

criterion (BIC), and the concordance index (C-index). White robust standard errors control the errors at 

the participant ID level so that the estimated result is highly accurate. 

 

The modified mathematical model for the time-varying covariates 

The traditional Cox PH model does not consider a time-variant covariate. This modified model for time-

variant covariate aims to fill this gap. A comprehensive integrated framework for jointly analyzing both 

survival and longitudinal data is presented by this model. This model offers new possibilities for standard 

statistical problems of this type, such as unmeasured confounding and missing data. It also shows how to 

deal with generalizable claims and shared random effects from covariates efficiently. When it comes to 

predictions on lifetime survival outcomes, the model reflects the dynamic nature of clinical covariates. 

Components of the proposed Model: This model is an extension of the Cox proportional hazards model, 

which is an important method in survival analysis. The Cox model estimates hazard ratios and also allows 

the integration of time-varying covariates. Time-varying covariates are explicitly modeled to show the 

changing clinical parameters over a time of study. It is a model that will accept both continuous and 

categorical covariates—what might be called a full rendering of developing patient profiles. This model 

introduces the concept of dynamic treatment effects, meaning that treatments at different times may have 

different effects. This approach allows a more nuanced look at efficacy in the treatment of specific diseases 

- particularly with longitudinal studies reporting its effects over time and how people respond to those 

treatments in turn. This approach captures the time-varying covariates and clinical parameter changes over 

time with the look at longitudinal data. The joint modeling accounts for the interdependence between 

survival outcomes and repeated measurements. Robust methods have been developed to deal with 

censored observations to reduce bias. Methods such as inverse probability weighting are considered in 

addressing potential survivorship bias. There is rigorous internal and external dataset verification of the 

model; this sensitivity analysis will measure the effect of model assumptions, ensuring reliable and robust 

results. 
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Rationale for the Proposed Model: The model is built to be versatile and accommodate different disease 

domain characteristics. This model  

is modified to handle uneven observations and irregularities in longitudinal studies to ensure an accurate 

representation of the time-varying characteristics of covariates. For explicitly modeling time-varying 

covariates, the model aims to enhance the predictive accuracy of survival outcomes. Precise prognoses for 

patients are essential for healthcare professionals to make an informed decision. The proposed model 

makes a methodological contribution to survival analysis and statistics. The model attempts to fill some 

gaps in the literature, brings a fresh look at joint models and time-varying regression coefficients, and 

introduces a higher-level statistical methodology beyond the current limits. 

 

Survival Model with Time-Varying Covariates for Longitudinal Data  

A time-varying covariate model for the survival analysis of longitudinal data is a model for the 

observations and time-to-event outcome analysis, where both aspects are accommodated in a complete 

model. The proposed model incorporates a shared random-effects structure in the longitudinal and survival 

settings, which allows for correlation between the two processes.  

The Longitudinal Component: 

𝑌𝑖𝑗(𝑡) =  𝜇(𝑡) + 𝑏𝑖0 + 𝑏𝑖1𝑥𝑖𝑗(𝑡) + 𝜖𝑖𝑗(𝑡)                                                              (13) 

The Survival Component: 

ℎ(𝑡|𝑖) =  ℎ0(𝑡)𝑒𝑥𝑝(𝛽1𝑥𝑖1(𝑡) +  𝛽2𝑥𝑖2(𝑡)+ . . . + 𝛾(𝑡) + ∅(𝑡))                        (14) 

Shared Random Effects: 

𝑏𝑖 ~ 𝒩(0, Σ𝑏)                                                                                                                (15) 

Correlation Structure: 

𝑐𝑜𝑟(𝜖𝑖𝑗(𝑡), 𝑏𝑖) =  𝜌                                                                                                      (16) 

 

Components of the Model 

Longitudinal Component (𝑌𝑖𝑗(𝑡)): Describes the evolution of the longitudinal measurement over time. 

It incorporates a fixed effect (𝜇(𝑡)),  time-varying covariates (𝑥𝑖𝑗(𝑡)), individual-specific random effects 

(𝑏𝑖0), and error term (𝜖𝑖𝑗(𝑡)). 

Survival Component (ℎ(𝑡|𝑖)): Models the hazard function for the time-to-event outcome. 

Includes time-varying covariates (𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . ),  shared random effects (𝑏𝑖), and additional terms 

(𝛾(𝑡) 𝑎𝑛𝑑 ∅(𝑡)).  

Let’s denote the vector 𝛽𝛾 representing the coefficients associated with the time-varying covariates 𝑧(𝑡). 

Similarly, 𝛽𝜙 represents the coefficients associated with the time-varying covariates 𝑤(𝑡). 

The vector representation for 𝛾(𝑡): 

𝛾(𝑡) =  𝜷𝜸
𝑻𝑧(𝑡)                                                                                            (17) 

𝜷𝜸 = [

𝛽𝛾1

𝛽𝛾2
...

𝛽𝛾𝑝

] 

𝛽𝛾1, 𝛽𝛾2, . . . , 𝛽𝛾𝑝 are the coefficients associated with each time-varying covariate 𝑧(𝑡). 

𝑝 is the number of time-varying covariates in 𝑧(𝑡). 

The vector representation for 𝜙(𝑡): 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250235654 Volume 7, Issue 2, March-April 2025 7 

 

                      𝜙(𝑡) =  𝜷𝝓
𝑻 𝑤(𝑡)                                                                                     (18)    

𝜷𝝓 = [

𝛽𝜙1

𝛽𝜙2
...

𝛽𝜙𝑞

] 

𝛽𝜙1, 𝛽𝜙2, . . . , 𝛽𝜙𝑞 are the coefficients associated with each time-varying covariate 𝑤(𝑡). 

𝑞 is the number of time-varying covariates in 𝑤(𝑡). 

These vectors represent the coefficients associated with the respective time-varying covariates 𝑧(𝑡) and 

𝑤(𝑡), allowing for the calculation of 𝛾(𝑡) and 𝜙(𝑡) within the survival model. 

Shared Random Effects (𝑏𝑖): 

Captures individual-specific variability in both the longitudinal and survival processes. 

Modeled as a multivariate normal distribution with a covariance matrix (Σ𝑏).  The covariance matrix Σ𝑏 

represents the covariance structure of the shared random effects 𝑏𝑖. Since 𝑏𝑖 follows a multivariate normal 

distribution with mean 0 and covariance matrix Σ𝑏 , Σ𝑏 will be a square matrix with a dimension equal to 

the number of shared random effects. 

Let’s denote the covariance matrix Σ𝑏 as: 

𝚺𝒃 =  [

𝜎𝑏1
2 𝜎𝑏1,𝑏2       … 𝜎𝑏1,𝑏𝑚

𝜎𝑏2𝑏1
⋮

𝜎𝑏2
⋮

2          … 𝜎𝑏2,𝑏𝑚
⋮

𝜎𝑏𝑚,𝑏1 𝜎𝑏𝑚,𝑏2     ⋯ 𝜎𝑏𝑚
2

] 

Where: 

𝜎𝑏𝑖
2  represents the variance of the 𝑖 − 𝑡ℎ shared random effect 𝑏𝑖. 

𝜎𝑏𝑖𝑗 represents the covariance between the 𝑖 − 𝑡ℎ 𝑎𝑛𝑑 𝑗 − 𝑡ℎ shared random effect 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑗 . 

The matrix is symmetric since the covariance between 𝑏𝑖 𝑎𝑛𝑑 𝑏𝑗 is the same as the covariance between 

𝑏𝑗  𝑎𝑛𝑑 𝑏𝑖. 

The diagonal elements (𝜎𝑏𝑖
2 ) represent the variances of individual random effects, while off-diagonal 

elements (𝜎𝑏𝑖𝑗) represent the covariances between pairs of random effects. These covariances capture the 

dependency structure among the shared random effects. 

Correlation Structure: 

The correlation structure introduces a correlation (𝜌) between the random effects in the longitudinal and 

survival components. 

The strong association between the individual-specific patterns of measurement and survival outcome 

would only occasionally be followed by longitudinal data no longer understating like gathering place.  

This joint model includes time-varying covariates and shared random effects, this correlation pattern can 

be extended to later time points which incorporate survival outcomes for longitudinal data. The correlation 

structure takes into account possible dependencies between longitudinal and survival processes. 

 

Cox Proportional-Hazards Model with Time-Varying Covariates 

The hazard function (ℎ(𝑡)) in the Cox Proportional-Hazards model is given by:  

ℎ(𝑡) =  ℎ0(𝑡)  ∙ exp(𝛽1𝑋1 +  𝛽2𝑋2+ . . . + 𝛽𝑘𝑋𝑘)                                                                     (19)  

Where: 

ℎ0(𝑡) is the baseline hazard function. 
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𝑋1, 𝑋2, . . . , 𝑋𝑘 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑠.  

𝛽1, 𝛽2, . . . , 𝛽𝑘 are the corresponding coefficients. 

Incorporating time-varying covariates (𝑍1(𝑡), 𝑍2(𝑡), . . . , 𝑍𝑚(𝑡)) into the model, the hazard function 

becomes: 

ℎ(𝑡) =  ℎ0(𝑡)  ∙ exp (𝛽1𝑋1 + 𝛽2𝑋2+ . . . + 𝛽𝑘𝑋𝑘 +  𝛾1𝑍1(𝑡) +  𝛾2𝑍2(𝑡)+ . . . + 𝛾𝑚𝑍𝑚(𝑡))                      

                                                                                                                                               (20) 

Where: 

𝑍1(𝑡), 𝑍2(𝑡), . . . , 𝑍𝑚(𝑡) are time-varying covariates. 

𝛾1, + 𝛾2, . . . , 𝛾𝑚 are the corresponding coefficients for time-varying covariates. 

Dynamic Treatment Effects: 

Specify time-varying covariates based on the objective of the study: 

1. Ever use the treatment (Contraceptives) (Yes/No):  

z1i(t) =  1 if an individual i has ever used treatment over time t, else z1i(t) =  0. 

2. Age at First Use: 

z2i(t)  =  t − Agei at which individual i first used treatment (Contraceptives) if 

Agei ≤  t, else z2i(t) =  0 

3. Duration of Use: 

Z3i(t) = t − Start time𝑡, where 𝑆𝑡𝑎𝑟𝑡 𝑡𝑖𝑚𝑒𝑡 is the time when the individual i started using treatment 

(Contraceptives) . 

4. Treatment (Contraceptives) Method: 

Since this is a categorical variable, we can represent it as binary indicators for each method, or we 

could use a time-varying covariate representing the intensity of usage of a particular method over time. 

5. Changes in Treatment Method (Contraceptive Methods): 

z5i(t) = 1 if an individual i changes treatment methods between t and t+dt, else z5i(t) = 0. (dt is a 

small time interval) 

6. Intention to Use Treatment in the Future: 

z6i(t) = 1 if individual i has the intention to use treatment in the future at time t, else 

z6i(t) = 0 

7. Time since Last treatment Use: 

Z7i(t) = t − Last use timei, where Last use time i is the time of the last reported use of a treatment 

method by individual i. 

8. Cumulative Duration of Treatment Use: 

Z8i(t) =  ∫[Start timei, t] z3i(dt), that is the cumulative time spent using treatment from start time i to 

time t. 

9. Treatment (Contraceptives) Method Switching: 

z9i(t) = 1 if individual i switch treatment methods between consecutive time points, else z9i(t) = 0 

10. Treatment Use Patterns: 

This categorical variable can be represented using binary indicators for different patterns of use. 

11. Time-varying Intention to Use Treatment: 

z11i(t) = 1 if individual 𝑖 change intention to use treatment between 𝑡 and 𝑡 + 𝑑𝑡, else z11i(t) = 0. (𝑑𝑡 

is a small time interval) 
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Interpretation of the Model 

The extended Cox Proportional Hazards model with time-varying covariates and an additional time-

varying component 𝜙(𝑡)  can be interpreted by considering the impact of each variable on the hazard 

function. Let's break down the interpretation of the model: 

ℎ(𝑡│𝑖): The hazard function for individual 𝑖 at time 𝑡 represents the risk of an event occurring at that time 

for the individual. 

ℎ0(𝑡):  Represents the baseline hazard function at a time 𝑡. The hazard when all covariates are zero. This 

is the reference for comparing the impact of other covariates. 

𝛽1, 𝛽2, . . .  , 𝛽(𝑝×𝑞): Coefficients associated with fixed covariates 𝑋𝑗𝑖 represent the log hazard ratio. For 

example, if 𝛽1 is positive, it indicates an increase in the hazard for a one-unit increase in 𝑋1𝑖. 

𝑋1𝑖 , 𝑋2𝑖, . . .  , 𝑋𝑝𝑖: Fixed covariates for individual 𝑖 are time-invariant characteristics. The coefficients 

(𝛽1, 𝛽2, . . .  , 𝛽𝑝×𝑞) quantify the impact of these covariates on the hazard, 

𝛾1(𝑡), 𝛾2(𝑡), … , 𝛾𝑞(𝑡): Coefficients associated with time-varying covariates 𝑍(𝑗𝑖(𝑡)) represent the log hazard 

ratio for the effect of 𝑍(𝑗𝑖(𝑡)) at time 𝑡. Positive values indicate an increase in hazards associated with 

changes in 𝑍(𝑗𝑖(𝑡)) . 

𝑍(1𝑖(𝑡)), 𝑍(2𝑖(𝑡)), … , 𝑍(𝑞𝑖(𝑡)): Time-varying covariates for individual 𝑖 capture changes over time. The 

coefficients 𝛾1(𝑡), 𝛾2(𝑡), … , 𝛾𝑞(𝑡): quantify the impact of these covariates on the hazard at a given time. 

∅(𝑡): The additional time-varying covariate represents unobserved time-dependent effects not explicitly 

accounted for by measured covariates. The coefficient ∅(𝑡): quantifies the impact of this unobserved 

factor on the hazard at a time 𝑡. 

Example: 

If  𝛾(1(𝑡)) is positive, it suggests that an increase in 𝑍(1𝑖(𝑡)) at time 𝑡 is associated with an increased hazard 

of the event for individual 𝑖 at that specific time 

It’s imperative to note that interpretation of the coefficients should be done in the context of the field of 

study with respect to the variables considered for the study. It is also important to ensure that the 

proportional hazards assumption is validated.  

 

Partial Likelihood Function for the Model 

Both longitudinal and survival components are incorporated into the joint model. The partial likelihood 

function is considered in terms of shared random effects structure, which is conditional on longitudinal 

data. 

When an observed event with times 𝑇𝑖 and a censoring indicator 𝛿𝑖 , then the partial likelihood function for 

the survival component is given as: 

 

𝐿(𝛽, 𝛾, 𝜙, Σ_𝑏 |𝑑𝑎𝑡𝑎)

=  ∏ [
𝑒𝑥𝑝(∑ (𝛿𝑖(𝛽𝑇𝑥𝑖(𝑡𝑖) + 𝛾(𝑡𝑖) + 𝜙(𝑡𝑖𝑡𝑖

)) − 𝑙𝑜𝑔(Σ𝑗exp (𝛽𝑇𝑥𝑖(𝑡𝑗) + 𝛾(𝑡𝑗) + 𝜙(𝑡𝑗))))

∑ 𝑒𝑥𝑝(∑ (𝛿𝑘(𝛽𝑇𝑥𝑘(𝑡𝑘) + 𝛾(𝑡𝑘) + 𝜙(𝑡𝑘𝑡𝑘
)) − 𝑙𝑜𝑔(Σ𝑙exp (𝛽𝑇𝑥𝑘(𝑡𝑙) + 𝛾(𝑡𝑙) + 𝜙(𝑡𝑙))))𝑛

𝑘=1

]

𝛿𝑖

    

                                                                                                                                                                      (21)

𝑛

𝑖=1

 

Here: 

𝑖 indexes the individuals. 

𝑗 indexes all persons at risk at time 𝑡𝑗 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250235654 Volume 7, Issue 2, March-April 2025 10 

 

𝑘 indexes the event of interest 

𝑙 indexes time points in a subset for comparisons 

Possible range is 1 ≤ 𝑗, 𝑘, 𝑙 ≤ 𝑛 

𝑡𝑖 indexes the observed event times for individual 𝑖. 

𝑥𝑖(𝑡) represents the time-varying covariate vector for individual 𝑖 at time 𝑡.  

𝛽 are the coefficients for the time-varying covariates. 

𝛾(𝑡) and 𝜙(𝑡) are adaptational components in the survival model. 

𝛿𝑖 is the censoring indicator for individual 𝑖, where 𝛿𝑖 = 1 if the event is observed and 𝛿𝑖 = 0 if the event 

is censored. 

Σ𝑏 is the covariance matrix for the shared random effects. 

The sum is over all observed event time 𝑡𝑖 for each individual. 

This partial likelihood function, gives the contribution to the overall likelihood of each individual’s 

survival data based on the observed longitudinal data and the shared random effect structure. The provided 

partial likelihood focuses on the survival aspect and assumes that the longitudinal data is observed for 

each individual. 

 

Assumptions 

The extended Cox Proportional Hazards Model with time-varying covariates relies on several key 

assumptions to ensure reliable outcomes. First, observations have to be independent which implies that 

the hazard of one individual has to be independent from the hazard of another. Second, non-informative 

censoring also supposes that the risk of censoring does not influence the survival probability and does not 

introduce bias to the estimated hazard ratios. Third, no interaction is allowed between the covariates and 

time to preserve the dynamic that changes independently of the hazard rate. To avoid bias, it is important 

to specify the model correctly; more so, the covariates should not be perfectly collinear, whether static or 

time-varying. Data limitations include suitability for the proportional hazard framework, adequate follow-

up time to document the events, and lack of competing risks that would necessitate another model. 

Subscribing to these assumptions improves the precision and reliability of survival consequences if time-

varying covariates are applied. 

 

Results 

The findings of this study are based on the Cox proportional hazards (PH) model and are given the form 

of hazard ratios (HR), which is a critical measure in survival statistics. The HR measures the relationship 

between a covariate and the hazard rate of an event happening which in this case is stopping contraceptive 

use.  

Standard Cox PH Model: Preliminary findings based on the analysis of the traditional model (Table 1) 

indicate several crucial findings pointing to the factors affecting the hazard of discontinuation of 

contraceptive use. Log_Age is shown to have a very strong negative relationship with the hazard (HR = 

0.7649, p < 2e-16), implying that as age increases the probability of stopping contraceptives decreases. In 

the case of the level of education, there is a small but statistically significant impact on the likelihood of 

discontinuation (HR = 1.015, p = 0.0151), contrary to what might be expected in most subjects, but it 

increases with the level of education of the participant. Any prior contraceptive use increases the risk (HR 

= 1.353, p < 2e-16), that is, every use of contraceptives causes discontinuation to have a positive effect. 

However, there was no significant effect on the hazard if the woman is currently using contraceptives as 
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shown in the result (HR = 1.274e−09, p = 0.8743). The model has good accuracy based on the concordance 

index, which is 0.848 The model fit statistics are AIC = 238047.5 and BIC = 238.085.2. 

 

Table 1: Cox Proportional-hazards Model Results (Traditional Model)

 
significance levels are denoted as follows: *p<0.05, **p<0.01, ***p<0.001. 

 

Table 2: Statistical Measures and Model Performance Metrics for the Traditional Model 

\ 

 

Proposed Cox PH Model with Time-Varying Covariates: 

As shown in Table 3 below, the findings of the proposed model enhance understanding of the factors that 

contribute to the hazard of cessation of contraceptive use. The result also shows that Log_Age has a 

negative influence on the probability of drop-out (HR = 0.7996, p-value < 2e-16) supporting the claim 

that older users are less likely to drop out of contraceptives. The level of education shows a strong positive 

relation (HR = 1.015, p = 1.47 × 10 −6 ), indicating that as the educational level rises the likelihood of 

course dropout also increases slightly. Marital status thus has a highly significant inverse effect (HR = 

0.9735, p = 2.97e−06), confirming that marital status is a protective factor against the risk of 

discontinuation. Importantly, any ever use of contraceptives did not cause a significant increase (HR = 

1.187, p = 0.584). On the other hand, currently using contraceptives presents the strongest significant 

negative impact with an HR of 6.182e−10 at <2e−16 percent level of significance. Finally, the probability 

of future contraception usage also has a negative impact on the continuation rate (HR = 0.7797, p < 2e−16). 

Switching has a significantly positive effect (HR = 5.779, p < 2e−16), which means that switching methods 

increase the chances of discontinuation significantly. However, there is no influence observed in the 

contraceptive use pattern (HR = 0.8892, p = 0.707). It verifies very good predictive accuracy, with 

concordance =0.858 and fit statistics AIC = 237513.6 and BIC = 237573.9. 

 

 

 

Variable Coefficient exp(coef) Pr(>|z|) exp(-coef) lower .95 upper .95 Significance 

Age -0.268 0.765 <2e-16 1.307 0.718 0.814 *** 

Level of 

education 0.015 1.015 0.0151 0.985 1.003 1.028 * 

marital Status -0.017 0.983 0.0925 1.018 0.963 1.003  
Ever use 

Contraceptive 0.303 1.353 <2e-16 0.739 1.308 1.4 *** 

Currently 

Using 

Contraceptive -20.480 1.27e-09 0.8743 7.85e+08 8.06e-120 2.01e+101   

 

Measure Value Standard Error df p-value 

Concordance 0.848 0.002 

  
Likelihood ratio test 24041 

 

5 <2e - 16 

Wald test 446.4 

 

5 <2e - 16 

Score (log-rank) test 17961   5 <2e - 16 
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Table 3: Cox Proportional-Hazards Model Results (Proposed Model) 

Variable 

Coeffici

ent 

exp(co

ef) 

Robust 

SE 

Pr(>|

Z|) 

exp(-

coef) 

lower 

.95 

Uppe

r. 

95 

Significa

nce 

log_Age -0.2236 0.8 0.0166 

<2e-

16 1.251 0.774 0.826 *** 

Level of Education 0.0147 1.015 0.0031 

1.47e-

06 0.985 1.009 1.021 *** 

marital Status -0.0269 0.974 0.0058 

2.97e-

06 1.027 0.963 0.984 *** 

Ever Use 

Contraceptive 0.1718 1.187 0.3134 0.584 0.842 0.642 2.195  
Currently Using 

Contraceptive -21.2 

6.18e-

10 0.3119 

<2e-

16 

1.62e+

09 

3.35e-

10 

1.14e-

09 *** 

Intention to Use 

Contraceptive in 

Future -0.2489 0.78 0.0162 

<2e-

16 1.283 0.755 0.805 *** 

Changes in 

Contraceptive 

Methods (Switching) 1.754 5.779 0.0138 

<2e-

16 0.173 5.625 5.937 *** 

Contraceptive Use 

Patterns  -0.1175 0.889 0.313 0.707 1.125 0.481 1.642   

Significance codes: 0‘***’0.001‘**’0.01‘*’0.05‘.’ 0.1‘ ’1 

 

Table 4: Statistical Measures and Model Performance Metrics for the Proposed Cox Model 

Measure Value Standard Error df p-value 

Concordance 0.858 0.002 8 p<2e-16 

Likelihood ratio test 24581  8 p<2e-16 

Wald test 782204  8 p<2e-16 

Score (log-eank) Test 18267  8 p<2e-16 

Robust Score Test 7777  8 p<2e-16 

 

Model Comparison 

The comparison between the standard Cox PH model and the proposed Cox PH models reveals several 

critical improvements with the time-varying covariates model: 

Proportional Hazards Assumption Check: Some of the covariate’s assumptions of the standard model were 

shown to have violated the proportional hazards assumption, which includes log_Age, Marital Status, and 

Ever Use Contraceptive, the results of which highlighted the need for the use of time-varying covariates 

to account for better contraceptive use. 

Model Fit: The assessment of the Model fit, which includes the Concordance Index (C-index), the Akaike 

Information Criterion (AIC), and the Bayesian Information Criterion (BIC) also emphasizes the 

effectiveness of the proposed new methodology of employing Cox proportional hazards model with time-

varying covariates against the basic technique. The C-index indicates the extent of the model’s ability to 
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predict an outcome and has a scale of 0.5, (implies random chance) to 1 (indicates a perfect prediction), 

which was higher for the proposed model (0.858) as compared to 0. 848 of the standard models – which 

points to better survival outcome discrimination for the proposed model. Similarly, the proposed model 

demonstrated a better-fit performance for reaching more decreased AIC and BIC values, 237,513.6 and 

237,573.9 compared to a model of 238,047.5 for AIC and 238,085.2 for BIC. Burnham and Anderson on 

the other hand propose that values differing by 10 or more points on the AIC or BIC are good enough to 

support the argument of the better model over the other (Burnham & Anderson, 2002). The differences in 

these measurements exceeding 500 points in both criteria are significant to support the superiority of the 

proposed model which is more effective in achieving an optimum balance between goodness of fit and 

model parsimony. These findings suggest that the modeling of time-varying covariates improves the 

capability of the model to explain structural changes in contraceptive use behaviors which helps make the 

predictions more accurate and useful for targeting public health programs. 

 

Discussion 

As the findings of this study showed, consideration of time-varying covariates is useful in capturing the 

dynamics of contraceptive use; arguably providing a better understanding of the factors that explain 

contraceptive dropout. Comparing the standard Cox PH model results with the Cox Model with time-

varying covariates, by identifying key predictors and the prediction indexes between the two models. 

 

Key Findings and Implications 

Impact of Age and Education: Similar to findings in Baffoe et al. (2020), the two models also showed 

that the probability of discontinuing contraceptive use decreases with age meaning that older persons are 

likely to continue to use contraceptives consistently. Likewise, and consistently with the previous analysis, 

education has a positive and a relatively small impact on discontinuation in both models. By extension, 

these findings suggest that young women and those with higher education may require special persuasion 

to continue using contraception. Such interventions could be subject-specific information campaigns with 

messages developed for a given age and educational level that resonate with findings by Prol et al. (2024). 

Intention to Use Contraception: The time-varying model showed a strong relationship between future 

intention to use contraception and significantly reduced discontinuation rates, which underlines the need 

for continued counseling and encouragement. Using the theory of planned behavior this finding implies 

that enhancing an individual’s behavioral intention to use contraceptives can greatly enhance consistent 

use of contraceptives, which can be seen as a crucial approach to long-term family planning for the general 

public which is in consistent with Safari et al, (2019) and Austin et al, (2020). 

Switching Contraceptive Methods: The significant positive impact of the method switching on the 

probability of discontinuation indicated in the proposed model suggests that those who switch methods 

may need some support, this  support the findings from Baffoe et al, (2024) Another way that public health 

programs could help to integrate these two methods is where such programs provide advice concerning 

possible side effects as well as the difficulties that women are likely to encounter while using new methods 

of contraceptives. Ensuring this support could help reduce the levels of dropout and increase overall 

contentment with the acceptability of contraceptive methods. 

 

Policy and Programmatic Implications 

The study's findings have implications for reproductive health policy and public health programs. Targeted  

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250235654 Volume 7, Issue 2, March-April 2025 14 

 

efforts aimed at younger women, women with higher education, and those who declared an intention to 

continue using contraceptives may be appropriate for increasing long-term contraceptive use. Further, 

assisting patients who want to switch methods might guarantee contraceptive chain connectivity which is 

quite crucial in offsetting gap instability to give steady family planning results. These findings underscore 

the need for public health interventions to include point-of-care counseling and other services for women 

for whom contraceptive method changes may be desirable at different points in their lives. 

 

Theoretical and methodological contributions. 

This study provides the theoretical background on reproductive health research by explaining the 

importance of time-varying covariates in the analysis of contraceptive use. Methodologically, this research 

aims to improve the method and will fill gaps. Limitations pointed out in the previous literature, including 

computational issues, uncontrolled heterogeneity, and sensitivity to assumptions by illustrating how the 

inclusion of time-varying covariates improves model fit. The adjustments of the clustering by the 

participant ID through the robust standard error accounts for within-subject dependencies, reducing bias 

in parameter estimates, which enhances computational efficiency and reliability allowing the model to 

handle large datasets for complex relationships with greater accuracy. This is in agreement with the 

recommendation made by Henderson et al. (2000) and Tanner et al. (2023) concerning the improvements 

of the methods for developing a sound approach for altering survival data structures. These adjustments 

are not unique to contraceptive research but can be equally applied to other fields where longitudinal data 

is used These changes enhance the fit of the model to the data as evidenced in the reduced AIC/BIC values 

and enhanced concordance indices.  This contribution builds on the theories by Rizopoulos et al. (2017) 

and Royston and Parmar (2019) and offers a more accurate interpretation of contraceptive discontinuation 

and dynamic covariate effects. The methodology used in this research makes the survival outcomes more 

realistic – a major advance over standard models. 

 

Conclusion 

This work offers a theoretical framework for analyzing contraceptive use processes by examining 

prospectively measured covariates in the Cox proportional hazard structure. This way, we obtain 

prospective predictors of contraceptive discontinuation and pre-identify important variables, including 

age, education level, intentions concerning the further use of contraceptives, and switching behavior, 

which must be considered in the further study of contraceptive utilization. The use of time-varying 

covariates improves model fit and prediction as it delivers a better estimation of the dynamic covariates 

that characterize contraceptive use. 

Altogether, the proposed model provides insights for developing public health policy and programmatic 

approaches to decreasing rates of contraceptive disruption among users. As such, this model provides 

substantial evidence for the need for interventions to maintain consistent contraceptive use among women; 

especially the young and educated ones. Moreover, facilitating the process of the method change might 

represent a major source of continuity since method change has been associated with higher rates of  

discontinuation. 

This work, therefore, expands the methodological literature of survival analysis by showing how time-

varying covariate aids in identifying temporal phenomena in reproductive health data. The method 

employed may form a useful starting point for other similar research in a bid to enhance model fit, as well 

as extend the understanding of temporal characteristics in longitudinal data. Subsequent work can include 
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cross-validation and external validation studies in other useful settings to establish the generalization of 

the findings and improvement of the model for use in other reproductive health and health-related sectors. 
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