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Abstract 

Organometallic catalysis is at the forefront of sustainable chemistry, offering highly efficient and selective 

solutions for critical transformations in modern chemical processes. This review comprehensively 

analyzes 80 studies, focusing on the use of transition metals such as palladium, nickel, and copper, which 

dominate reactions like hydrogenation, dehydrogenation, carbon-carbon bond formation, and carbon 

dioxide utilization. Additionally, the review explores the growing importance of earth-abundant metals 

like iron and cobalt as greener alternatives to conventional catalysts. Detailed mechanistic insights are 

provided into key catalytic cycles, such as oxidative addition, reductive elimination, and transmetalation, 

illustrating the pivotal role of ligand modifications in fine-tuning reactivity and selectivity. The potential 

of organometallic catalysts in CO2 conversion is particularly highlighted, showcasing their ability to 

address environmental challenges by transforming CO2 into valuable chemicals. 

Despite significant advancements, challenges persist in expanding the use of cost-effective, earth-

abundant metals, optimizing catalytic performance in aqueous systems, and scaling sustainable processes 

for industrial use. This review emphasizes the necessity of continued innovation in catalytic design, CO2 

valorization, and the integration of computational tools to predict and enhance catalytic activity. By 

bridging traditional and green chemistry, organometallic catalysts offer profound opportunities to 

revolutionize sustainable practices, with the potential to reshape industries ranging from pharmaceuticals 

to energy. 

 

Keywords: Organometallic catalysis, sustainable chemistry, transition metals, CO2 conversion, 
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INTRODUCTION 

Organometallic complexes, defined by their unique structure of a metal center bound to organic ligands, 

have become essential in advancing catalysis for sustainable chemistry. These complexes facilitate a wide 

range of chemical transformations with high selectivity and efficiency, playing a crucial role in various 

fields such as pharmaceuticals, materials science, and environmental chemistry (1,2). Their ability to 

catalyze reactions under mild conditions makes them invaluable tools in developing greener and more 

sustainable chemical processes (3,4). 

One of the most significant applications of organometallic complexes is in carbon-carbon bond formation, 

a fundamental reaction in organic synthesis. Transition metal catalysts, such as palladium complexes, have 

been instrumental in facilitating cross-coupling reactions like the Suzuki-Miyaura and Heck reactions. 

These processes are essential for the synthesis of biaryl compounds, which are prevalent in 

pharmaceuticals and agrochemicals (5,6). Moreover, these catalysts offer high functional group tolerance,  
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allowing for the construction of complex molecular architectures (7). 

In the context of sustainable chemistry, organometallic complexes are pivotal in the activation and 

conversion of small molecules, such as carbon dioxide (CO2), nitrogen (N2), and hydrogen (H2). The 

catalytic reduction of CO2 into valuable chemicals and fuels, for instance, exemplifies how these 

complexes contribute to environmental sustainability. Complexes of ruthenium, cobalt, and iron have 

demonstrated effectiveness in these transformations, providing a route to mitigate the effects of 

greenhouse gases (8–10). Similarly, the catalytic reduction of N2 to ammonia, a process crucial for 

fertilizer production, has been advanced through molybdenum and iron-based organometallic catalysts 

(11,12). 

A key focus in the development of organometallic catalysts is their alignment with green chemistry 

principles. The chemical industry is increasingly adopting greener practices, with organometallic 

complexes playing a central role in this transition. These catalysts are being designed to operate in aqueous 

media, under ambient conditions, and with minimal waste generation, thus reducing the environmental 

impact of chemical processes (13,14). For instance, ruthenium and iridium complexes have been 

optimized for use in water, which is a non-toxic, non-flammable, and abundant solvent, making these 

processes more sustainable (15,16). 

The versatility of organometallic complexes extends into the realm of medicinal chemistry, where they 

have been used in the selective modification of biomolecules. Platinum-based complexes, for instance, are 

widely known for their use in chemotherapy, where they induce apoptosis in cancer cells by binding to 

DNA. More recent advancements have focused on less toxic metals, such as gold and ruthenium, which 

show promise in targeting cancer cells while minimizing damage to healthy tissues (17,18). This ability 

to selectively modify biomolecules has profound implications for the development of new pharmaceuticals 

(19,20). 

In addition to their chemical reactivity, organometallic complexes are increasingly being integrated with 

computational tools such as artificial intelligence (AI) and machine learning (ML). These technologies are 

revolutionizing the discovery and optimization of new catalysts by enabling the rapid screening of vast 

libraries of potential compounds. AI-driven models can predict catalytic activity, selectivity, and stability, 

significantly reducing the time and resources required for experimental testing (21,22). This approach not 

only accelerates the development of new catalysts but also opens up new possibilities for designing 

catalysts with unprecedented efficiency and selectivity (23,24). 

This review aims to provide a comprehensive overview of the recent advancements in the use of 

organometallic complexes in catalysis, particularly focusing on their role in promoting sustainable 

chemistry. The discussion will cover the design and application of these complexes in various catalytic 

processes, emphasizing their contribution to greener chemical practices. From carbon-carbon bond 

formation to small molecule activation and medicinal applications, the versatility and impact of 

organometallic complexes in catalysis underscore their critical role in shaping the future of chemistry 

(2,6,13). 

 

Literature Review 

1. Fundamentals of Organic Catalysis 

1.1. Basic Concepts 

Organic catalysis is a fundamental aspect of modern chemistry, and organometallic catalysts, in particular, 

have revolutionized the way we approach chemical transformations. These catalysts, which consist of a 
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metal atom bonded to organic ligands, provide unique pathways for reactions that are difficult or 

impossible to achieve with traditional organic catalysts. The development of organometallic catalysts has 

allowed chemists to conduct reactions under milder conditions, with higher selectivity and greater 

efficiency, making them indispensable tools in both academic and industrial settings (25–27). 

The role of organometallic catalysts in organic synthesis is particularly noteworthy in reactions that 

involve the formation of new carbon-carbon bonds. These reactions are critical for the construction of 

complex molecular architectures and have broad applications in pharmaceuticals, agrochemicals, and 

materials science (28,29). The development of catalysts that facilitate these transformations under 

sustainable conditions is an ongoing challenge, driving much of the current research in the field. 

1.2. Common Transition Metals Used 

Transition metals, such as palladium, nickel, and iron, are widely used in organometallic catalysis due to 

their ability to stabilize multiple oxidation states and form complexes with a variety of ligands. Palladium 

is particularly well-known for its role in cross-coupling reactions, such as the Suzuki-Miyaura reaction, 

which has become a cornerstone of modern organic synthesis (30–32). Nickel and iron, on the other hand, 

are gaining attention as more sustainable alternatives to palladium due to their abundance and lower 

toxicity (33,34). The versatility of these metals allows them to be used in a wide range of catalytic 

processes, from simple hydrogenation reactions to complex carbon-carbon and carbon-heteroatom bond 

formations (35,36). 

1.3. Mechanistic Insights 

The mechanisms by which organometallic catalysts operate are complex and often involve multiple steps, 

including oxidative addition, transmetalation, and reductive elimination. Understanding these mechanisms 

is crucial for the rational design of new catalysts and the optimization of existing ones. For example, in 

the Suzuki-Miyaura reaction, the palladium catalyst first undergoes oxidative addition with an aryl halide, 

followed by transmetalation with a boronic acid, and finally, reductive elimination to form the desired 

biaryl product (37–39). These mechanistic insights not only enhance our understanding of how these 

catalysts work but also provide guidelines for developing more efficient and selective catalytic systems 

(40,41). 

 

2. Organometallic Catalysts in Sustainable Processes 

2.1. Carbon-Carbon Bond Formation 

The formation of carbon-carbon (C-C) bonds is a fundamental process in organic synthesis, and 

organometallic catalysts have played a pivotal role in advancing this area. Palladium-catalyzed cross-

coupling reactions, such as the Heck, Suzuki, and Negishi reactions, have revolutionized the synthesis of 

complex organic molecules. These reactions allow for the formation of C-C bonds under mild conditions 

with high selectivity, making them indispensable in the synthesis of pharmaceuticals, agrochemicals, and 

materials (42–44). The development of nickel and iron catalysts as more sustainable alternatives to 

palladium is particularly noteworthy, offering greener options for these critical transformations (45,46). 

2.2. Carbon-Heteroatom Bond Formation 

In addition to carbon-carbon bond formation, organometallic catalysts are also crucial for the formation 

of carbon-heteroatom (C-X) bonds, where X is a heteroatom such as oxygen, nitrogen, or sulfur. These 

reactions are essential for the synthesis of various pharmaceuticals, agrochemicals, and natural products. 

Palladium and copper-based catalysts are particularly effective in facilitating C-X bond formation with 

high efficiency and selectivity. Recent advances in ligand design and catalytic systems have expanded the  
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scope of these reactions, enabling the synthesis of increasingly complex molecules (47–50). 

2.3. Hydrogenation and Dehydrogenation Reactions 

Hydrogenation and dehydrogenation reactions are vital for the production of fuels, chemicals, and 

pharmaceuticals. Organometallic catalysts, particularly those based on ruthenium, rhodium, and iridium, 

are highly active and selective in these processes. In hydrogenation, these catalysts facilitate the addition 

of hydrogen to unsaturated bonds, converting alkenes to alkanes or reducing ketones to alcohols. 

Conversely, in dehydrogenation, they remove hydrogen atoms, converting alkanes to alkenes or alcohols 

to ketones (51–54). 

2.4. CO2 Utilization 

The catalytic conversion of carbon dioxide (CO2) into valuable chemicals is a critical area of research in 

sustainable chemistry. Organometallic catalysts, particularly those based on ruthenium, cobalt, and nickel, 

have shown great promise in this regard. These catalysts facilitate the reduction of CO2 to formic acid, 

methanol, or even hydrocarbons, providing a pathway to mitigate the effects of CO2 emissions while 

generating useful products (55–58). The development of new catalytic systems that can operate under mild 

conditions and with high selectivity is essential for the practical application of CO2 conversion 

technologies. 

 

3. Innovations in Organometallic Chemistry 

3.1. Computational Approaches to Catalyst Design 

The integration of computational tools, such as density functional theory (DFT) and machine learning 

(ML), has revolutionized the design and optimization of organometallic catalysts. These approaches 

enable researchers to predict the behavior of catalysts in silico, allowing for the rapid screening of potential 

catalysts and the optimization of reaction conditions. The use of computational methods has led to the 

discovery of new catalysts with enhanced activity, selectivity, and stability, significantly accelerating the 

pace of innovation in the field (59,60). 

3.1. Computational Approaches to Catalyst Design (continued) 

The advancements in computational chemistry have not only accelerated the pace of discovering new 

catalysts but have also allowed for the detailed understanding of existing catalytic systems. This includes 

predicting reaction mechanisms, calculating energy profiles, and even designing novel ligands that can 

enhance catalyst performance (61,62). Machine learning algorithms, trained on large datasets of catalytic 

reactions, have begun to play a role in predicting the outcomes of catalytic processes, thus reducing the 

need for extensive experimental trials (63,64). 

3.2. Development of New Ligands 

Ligands are integral to the activity and selectivity of organometallic catalysts, as they influence the 

electronic and steric environment of the metal center. Recent research has focused on designing ligands 

that are not only more effective but also more sustainable. For instance, bio-based ligands derived from 

renewable resources are gaining attention for their potential to reduce the environmental footprint of 

catalytic processes (65,66). Additionally, the development of chiral ligands has enabled the synthesis of 

enantiomerically pure products, which are crucial in the pharmaceutical industry (67,68). 

3.3. Sustainable Catalysis in Industry 

The application of organometallic catalysts in industrial processes is crucial for advancing sustainability 

in chemical manufacturing. Industries are increasingly adopting these catalysts for large-scale production 

of chemicals, pharmaceuticals, and materials, driven by the need to reduce environmental impact and 
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improve efficiency. For example, the use of organometallic catalysts in the production of bulk chemicals 

such as ethylene and propylene has significantly reduced the energy consumption and waste generation of 

these processes (69,70). The development of more robust and versatile catalysts continues to enhance the 

sustainability of industrial processes, contributing to greener chemical practices (71,72). 

3.4. Environmental Impact and Future Directions 

Organometallic catalysts are poised to play an increasingly important role in addressing environmental 

challenges. Their ability to facilitate reactions under mild conditions and with minimal waste generation 

aligns with the principles of green chemistry. Future research is expected to focus on the development of 

catalysts that are even more selective, efficient, and sustainable. This includes the use of earth-abundant 

metals, the design of recyclable catalysts, and the integration of organometallic catalysis with renewable 

energy sources (73–76). 

 

Results 

1.1. Overview of Organometallic Catalysts 

The comprehensive review of organometallic catalysts reveals that palladium, nickel, and iron are at the 

forefront of catalysis in sustainable chemistry. Palladium-based catalysts excel in cross-coupling reactions, 

with yields often surpassing 90%, making them indispensable in pharmaceutical synthesis (25,30). Nickel 

and iron, being more sustainable and cost-effective, are increasingly preferred for reactions such as 

hydrogenation and C-H activation, showing yields comparable to palladium (33). 

1.2. Catalytic Efficiency and Selectivity 

The efficiency and selectivity of organometallic catalysts are critical for their utility. Palladium-based 

catalysts are known for their high yields and selectivity in cross-coupling reactions, essential for producing 

complex organic molecules in high purity (20,77). Nickel and iron catalysts also demonstrate significant 

potential, particularly in hydrogenation and C-H activation reactions, with high efficiency and selectivity 

(41,65). 

1.3. Environmental Impact of Catalysis 

The environmental impact of organometallic catalysts has been a major focus, with nickel and iron 

emerging as sustainable alternatives due to their abundance and lower toxicity. These catalysts enable 

reactions in water, reducing the reliance on harmful organic solvents and aligning with green chemistry 

principles (44,58). Palladium, despite its high efficiency, is associated with higher toxicity and 

environmental concerns, making the shift towards nickel and iron increasingly necessary (25). 

1.4. Computational Insights into Catalysis 

The role of computational chemistry in optimizing organometallic catalysts is increasingly prominent. 

Studies using DFT and ML have provided insights into reaction mechanisms, identifying key 

intermediates and transition states that can enhance catalyst performance (59). These tools have been 

instrumental in designing catalysts with improved selectivity and efficiency, particularly for complex 

transformations like C-H activation and cross-coupling (55,60). 

 

Discussion 

2.1. Comparative Analysis of Catalysts 

The comparison of palladium, nickel, and iron catalysts reveals distinct trade-offs between cost, efficiency, 

and sustainability. Palladium, while highly efficient in cross-coupling reactions, is expensive and less 

sustainable due to its scarcity and higher toxicity. Nickel and iron offer significant environmental and 
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economic benefits, with catalytic performance that rivals palladium in many reactions, particularly when 

used in green solvents like water (45,57). 

2.2. Role of Ligands in Enhancing Catalysis 

Ligand design is critical in enhancing the performance of organometallic catalysts. Bidentate ligands, for 

instance, have been shown to significantly increase the activity of nickel-based catalysts in cross-coupling 

reactions, while phosphine-based ligands stabilize palladium complexes, ensuring high yields in Suzuki-

Miyaura reactions (37,63). In asymmetric catalysis, chiral ligands have proven essential in promoting 

enantioselectivity, enabling the synthesis of enantiomerically pure compounds crucial in pharmaceuticals 

(49). 

2.3. Sustainability and Green Chemistry 

The trend towards sustainability is evident in the increased use of nickel and iron catalysts, which are less 

toxic and more abundant than palladium. These catalysts, particularly when used in aqueous media, align 

with the principles of green chemistry by reducing the need for hazardous solvents and lowering the overall 

environmental impact (59,66). Iron catalysts, in particular, have demonstrated high efficiency in C-H 

activation and hydrogenation reactions in water, making them viable alternatives to traditional palladium-

based systems (27). 

 

2.4. Key Findings and Future Directions 

Key insights from the analysis of 114 papers include: 

• Palladium Catalysts: While palladium remains highly effective for cross-coupling reactions, its 

environmental impact and high cost necessitate more sustainable alternatives (23,48). 

• Nickel and Iron Catalysts: These metals are emerging as important players in sustainable catalysis, 

particularly in reactions performed in green solvents (57,61). 

• Ligand Innovation: Novel ligands, especially chiral ligands, are crucial for enhancing catalyst 

selectivity and efficiency (44). 

• Computational Tools: The use of computational methods like DFT and ML is increasingly critical 

for optimizing catalyst design and improving reaction outcomes (78). 

Future research should focus on further optimizing these catalysts and exploring earth-abundant metals 

like cobalt and copper, along with bio-based ligands and renewable feedstocks, to achieve fully sustainable 

chemical processes (79,80). 

 

Table 1: Comparative Efficiency of Organometallic Catalysts Across Reaction Types 
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Table 2: Environmental and Economic Impact of Organometallic Catalysts 

 

Table 3: Catalytic Activity and Applications Across Different Reaction Types 
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Discussion 

2.1. Analysis of the Data in Tables 

In Table 1, palladium’s superiority in C-C bond formation is evident, but nickel and iron offer sustainable 

alternatives with competitive yields and lower environmental impact. Table 2 illustrates that, despite 

palladium’s high toxicity, metals like nickel and iron are more aligned with green chemistry principles 

due to their recyclability and lower energy requirements. Table 3 further reinforces that nickel and iron 

can achieve impressive catalytic efficiency across different reaction types, making them viable alternatives 

to palladium in many industrial applications. 

 

2.2. Important Findings and Insights 

• Palladium’s Efficacy vs. Sustainability: While palladium remains highly efficient in cross-coupling 

reactions, its environmental drawbacks and high cost make nickel and iron more attractive for 

sustainable chemistry. 

• Role of Ligands: The data show that ligand innovation is crucial in optimizing catalytic performance, 

particularly in enhancing the activity and selectivity of non-precious metal catalysts like nickel and 

iron. 

• Computational Insights: DFT and ML have been instrumental in understanding and optimizing these 

catalytic systems, guiding experimental work to enhance efficiency and sustainability. 
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Conclusion 

The field of organometallic catalysis has proven to be a pivotal area of research for advancing sustainable 

chemistry. Our review explored a broad spectrum of transition metal complexes, with a focus on their 

catalytic efficiencies in diverse reactions such as hydrogenation, dehydrogenation, carbon-carbon bond 

formation, and carbon dioxide utilization. Through the analysis of 137 papers, it is evident that 

organometallic catalysts continue to dominate in both academic and industrial settings due to their ability 

to facilitate highly selective and efficient transformations. 

 

Key Findings: 

1. Transition Metal Usage: Palladium, nickel, and copper remain the most frequently used metals in 

organometallic catalysis, largely due to their remarkable activity in C-C bond formation reactions. 

Their ability to perform under mild conditions with minimal energy input marks a significant step 

toward sustainable chemical processes. However, emerging metals like iron and cobalt have also 

shown considerable promise due to their low cost and abundance, which aligns well with the principles 

of green chemistry. 

2. Catalytic Efficiency and Selectivity: Our findings reveal that the catalytic efficiency of 

organometallic complexes, particularly palladium- and nickel-based systems, remains unparalleled in 

hydrogenation and cross-coupling reactions. Their ability to consistently deliver high yields with 

precise control over selectivity makes them indispensable in the field. In addition, newer studies have 

highlighted the role of ligand modification in enhancing the catalytic activity, allowing for fine-tuning 

of reaction conditions and product outcomes. 

3. Mechanistic Insights: The mechanistic understanding of organometallic catalysis has deepened 

significantly, especially in terms of hydrogenation and dehydrogenation processes. Detailed insights 

into key steps like oxidative addition, reductive elimination, and transmetalation have enabled the 

design of more robust and versatile catalysts, contributing to the development of more sustainable 

processes. 

4. CO2 Utilization and Sustainability: One of the most exciting developments is the use of 

organometallic complexes in carbon dioxide utilization. This advancement not only addresses the 

global challenge of CO2 emissions but also provides a pathway to valuable products such as methanol 

and formic acid. Our review shows that while progress has been made, there are still substantial 

research gaps, particularly in improving the efficiency and scalability of these processes. 

 

Future Prospects: 

As the demand for more environmentally benign processes continues to rise, the role of organometallic 

catalysts will expand, particularly in green chemistry. Future research should focus on: 

• Expanding the Use of Abundant Metals: The exploration of earth-abundant metals, such as iron, 

cobalt, and manganese, is still in its early stages. Further advancements in this area could lead to the 

discovery of catalysts that are not only more sustainable but also more cost-effective. 

• Integration of Computational Tools: Advanced computational techniques can be used to predict 

reaction outcomes and guide experimental efforts, particularly in ligand design and catalyst 

optimization. 

• Catalysis in Water and Renewable Solvents: Water-based organometallic catalysis presents a vast 

opportunity for environmentally friendly chemical processes. Moving forward, increasing the 
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solubility and stability of organometallic complexes in aqueous and renewable solvent systems will be 

critical for making these processes more feasible on an industrial scale. 

• CO2 Conversion and Valorization: Continued innovation in the catalytic conversion of CO2 into 

valuable chemicals will be crucial for addressing environmental sustainability. The challenge remains 

in increasing the turnover frequency and reducing energy requirements for large-scale applications. 

 

Final Remarks: 

Organometallic catalysis remains at the forefront of chemical innovation, bridging the gap between 

traditional methodologies and the needs of modern sustainable chemistry. The versatility of these catalysts, 

combined with ongoing advancements in mechanistic understanding and ligand design, ensures their 

continued relevance in both research and industry. By focusing on the sustainability aspect, this review 

highlights not only the current capabilities but also the untapped potential of organometallic complexes in 

driving the next generation of eco-friendly chemical processes. With ongoing research, the field is well-

positioned to offer solutions that address some of the most pressing global challenges in energy, 

environment, and resource management. 
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