

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Revolutionizing Physiotherapy with Haptic Simulation: A Pathway to Smarter Rehabilitation

Deepali Chauhan¹, Bhawna Verma²

¹MPT Neurology, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana ²Associate Professor, Pt. B.D. Sharma University of Health Sciences, Rohtak, Haryana

Abstract:

Background: Haptic technology has emerged as a crucial interface in various fields, enhancing user experience through tactile feedback. This study investigates the effectiveness of haptic feedback in improving task performance and user satisfaction in virtual environments.

Methodology: A literature search in PubMed and Google Scholar from 2014 to 2024 used keywords related to haptic simulation in physiotherapy. Inclusion criteria focused on English-language studies from the last decade involving randomized clinical trials or experimental designs using haptic interfaces, with full-text access. Exclusion criteria eliminated older studies, review articles, and those without free access. Out of 117 identified articles, 30 were shortlisted after abstract screening, and 12 were selected for final analysis.

Discussion: Haptic technologies in rehabilitation improve gait, strengthen patient ownership, and enhance recovery through virtual feedback and robotic systems. They also enhance movement, balance, and user experience in prosthetics, demonstrating significant therapeutic potential.

Conclusion: Haptic feedback enhances performance and user satisfaction in virtual environments, highlighting its potential in various applications. This suggests a need for further exploration of its use in education and professional settings. Future research should aim to optimize haptic feedback mechanisms to fully maximize user benefits.

Keywords: Haptic, Simulation, Scope, Physiotherapy, neurological, musculoskeletal

INTRODUCTION

The term "Haptic" originates from the Greek term "haptesthai," which signifies the sense of touch. Haptic technology, or haptics, encompasses tactile feedback mechanism that exploit the user's sense of touch through the application of forces, vibrations, and movements. The term 'haptics' pertains to the ability to perceive and manipulate objects using the sense of touch.^[1]

Through haptic exploration, which involves active touch and tactile examination of an object, we can discern the overall geometric shape of a larger object. This perceptual process comprises six qualitative types of haptic exploration, each characterized by the activation of specific receptors and the integration of spatial and temporal information.^[2]

Haptic devices possess the ability to detect the cumulative or reactive forces applied by the user, whereas touch or tactile sensors quantify the pressure or force exerted by the user onto the interface, highlighting

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

a clear distinction between the two technologies.Haptic interfaces are classified into two main categories: force feedback and tactile feedback.^[1]

The field of haptics is comprised of three distinct domains: human haptics, machine haptics, and computer haptics. Upon physical contact with an object, an operator's skin receives interaction forces, which are then conveyed to the brain via sensory systems, giving rise to haptic perception. This, in turn, prompts the brain to issue commands that stimulate muscle activity, culminating in hand or arm movements, thereby demonstrating the fundamental principle of the human haptic system.^[3]

Notable instances of haptic technology encompass consumer peripherals integrated with advanced motors and sensory equipment, such as force feedback-enabled joysticks and steering wheels, enhancing the immersive experience. Advanced haptic technologies, such as PHANTOM devices, are engineered for specialised sectors, including industrial, medical, and scientific fields.^[1]

Haptic technology has far-reaching applications in various fields, encompassing telemanipulators, exoskeletal devices, advanced prosthetic limbs, physical rehabilitation, intelligent assistance devices, and near-field robotics, all of which leverage haptic feedback to enhance their functionality and user experience.^[3]

Typically, a haptics system includes:

- 1. Sensor(s)
- 2. Actuator (motor) control circuitry
- 3. One or more actuators that either vibrate or exert force.
- 4. Real-time algorithms (actuator control software, which we call a "player") and a haptic effect library.
- 5. Application programming interface (API), and often a haptic effect authoring tool.
- 6. The Immersion API is used to program calls to the actuator into your product's operating system (OS).^[1]

The effectiveness and progress of haptic interfaces hinge on several key factors, including the type of feedback, the dexterity and manipulability of the end-effector, the fidelity of haptic stimulation, and the advancement of actuator technology.^[3]

Phantom Device: This outfit is designed to learn the position of a stoner's fingertip and apply a precisely controlled force vector to it. The device's mileage extends to enabling stoner engagement with a wide range of virtual realities, furnishing a palpable experience. also, it's poised to play a pivotal part in the operation of remote manipulators.

Haptic Device: This manipulator is equipped with sensors, actuators, or a combination of both. Various haptic devices have been developed for specific purposes, with the most popular being tactile-based, penbased, and 3-degree-of-freedom (DOF) force feedback devices.

Haptic Interface: This system comprises a haptic device and software-based computer control mechanisms. Through the haptic interface, users can not only input information to the computer but also receive feedback from the computer in the form of physical sensations on various parts of their body.

Haptic Rendering: Haptic rendering is the process of calculating the sense of touch, particularly force, by sampling position sensors in the haptic device to determine the user's position within the virtual environment. This system consists of three components: a collision detection algorithm, a collision response algorithm, and a control algorithm.^[1]

Haptic feedback, also known as force feedback, enhances the fine-tuning of desired motor responses by providing tactile sensations that refine movement precision.^[4]Haptic devices are widely used in virtual

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

graphics environments to afford limited perception of mechanical properties such as force, vibration, and friction.^[5]

Haptic feedback in physical therapy is more demanding since it needs to adapt to each patient's functioning level and each therapy session. Furthermore, certain types of haptic feedback (such as vibrations) that adversely affect normal training can prove beneficial in physical therapy.^[6]

Handheld devices such the Haptic Revolver (Whitmire et al., 2018) provide users with the experience of touch, shear forces and motion in the virtual environment by using an interchangeable actuated wheel underneath the fingertip that spins and moves up and down to render various haptic sensations.^[7]

Rehabilitation robotics offers the possibility of new methods of physiotherapy in orthopaedics with patients with musculoskeletal injuries, such bone fractures.

Previous study suggests that a novel haptic-enhanced VR system featuring haptic simulation that was developed to facilitate the long-term poststroke recovery of upper- extremity motor function.^[8]

And fewer studies shows that exercises based on motor skill learning involving haptic interaction is more effective than a simple sensorimotor control training in multiple sclerosis.^[9]

So our objective of our study to evaluate the efficacy and scope of the haptics interface used in various conditions of Physiotherapy and also usability of the proposed system.

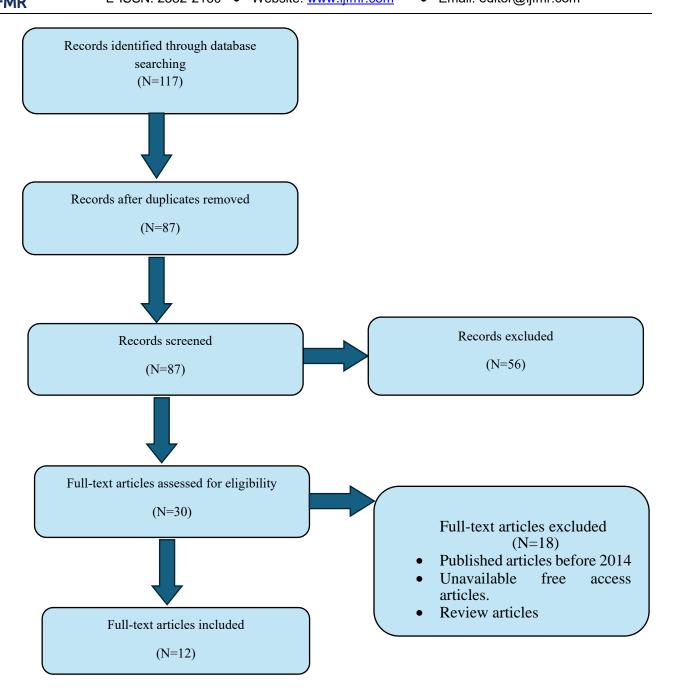
METHODOLOGY

SEARCH STRATEGY:The literature search is carried out from 2014 to 2024 in the following scientific databases: Pubmed, Google scholar

To carry out the searches in the scientific database, the keywords Haptic simulation, scope, Physiotherapy, neurological, musculoskeletal, conditions, physical therapy combining them using Boolean operators AND and OR in the different searches.

SELECTION CRITERIA: The following article inclusion criteria were established,

- Articles published in last 10 years (2014-2024)
- In English only
- Study design include Randomised clinical trail, experimental design, case study.
- Intervention carried out with haptic interface.
- Full text access articles were included.


The following are the exclusion criteria:

- Published articles before 2014
- Unavailable free access articles.
- Review articles

Study selection:

Identification- 117 articles Evaluation by abstract reading- 30 articles Revelant articles taken- 12 articles

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

CHARACTERISTICS OF THE INCLUDED STUDIES

SR No	Author/year	Sample size	Study location	Outcome measures	Intervention	Results
1.	Blouin,Lalumièr e, Gagnon et al. (2014) ¹⁰	Eighteen long-term MWUs (16 men, 2 women) with	Montreal, Canada	PAR-Q (physical activity readiness questionnaire)	Pre-training, Training with haptic biofeedback:	M _{HB} , Mean power output increased with training blocks, 6

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> •

					(2)	
		spinalcord		WUSPI((five 3 min	subjects
		injury		wheelchair	block (rest 2	succeeded in
		participated		user shoulder	min b/w the	changing
		in this study.		pain index)	blocks) 5	their MEF
		(Quasi-		Scoring -3.9/1	different	pattern to
		experimental		-	biofeedback	follow the
		study)			level were	target pattern
		57			presented)	in both
					visual	sides,4 in
					feedback,	right side, 1
					Post training	in left side.
					trail	in left side.
2			Rehabilitatio		uan	
2.				N.F. N.7 1 1	37	TZ: (1 (
	Afzal MR. Byun	A total of 16	n Center of	Mean Velocity	Young	Kinesthetic
	HY.	subjects, 8	Gyeongsang	Displacement	healthy	haptic
	Oh MK. et al	healthy and 8	Na- tional	(MVD),	participants	feedback
	$(2015)^5$	recovering	University	Planar	performed	signifi-
		from stroke,	Hospital	Deviation	balance tasks	cantly
		participated	(Jinju,	(PD),	after	reduced (p-
		in the present	Republic of	Mediolateral	assumption	values
		study. stroke	Korea)	Trajectory	of each of	<0.05) the
		patients		(MLT) and	four distinct	MVD, PD,
		ranged from		Anteroposteri	postures for	MLT, and
		15–30, 2		or Trajectory	30 s (one foot	APT
		have B/L		(APT)	on the	parameters
		hemiplegia, 3			ground; the	of body sway
		right sided, 3			Tandem	when any of
		left side (Romberg	the four pos-
		Quasi-			stance; one	tures was
		-				assumed. All
		experimental			foot on foam;	
		study)			and the	1
					Tandem	showed that
					Romberg	the body
					stance on	sway of
					foam) with	stroke
					eyes closed.	patients
					Patient eyes	decreased
					were not	when
					closed and	feedback was
					assumption	provided,
					of the	and the
					Romberg	MVD and
					stance (only)	
					stance (only)	

E-ISSN: 2582-2160 • Website: www.ijfmr.com

					was tested during a balance task 25 s in duration.	parameter exhibited significant values (p < 0.05 for both comparisons).
3.	Yeh SC. Lee SH. Chan R.C. et al (2017) ⁸	Author recruited 16 participants with hemiparesis and motor impairment due to stroke. aged between 20 and 85 years. their proximal upper extremity on the more affected side was in Brunnstrom Stages II–VI. (Quasi- experimental study)	Taipei Veterans General Hospital, Taiwan,	Fugl-Meyer assessment (FMA), Wolf motor function test (WMFT), Test Evaluant les Membres superieurs des Personnes Agees (TEMPA), Box and Blocks test (BBT), handheld dynamometers (JAMAR)	Each VR training session involved practicing the two VR tasks, the pinch strengthening , and pinch- and-lift tasks. Each patient received 30 min VR training sessions 3 times per week for 8 weeks. (24 sessions)	Outcome measures, (FMA), (TEMPA), (WMFT), (BBT), and Jamar grip dynamomete r, showed statistically significant progress from pretest to posttest and follow- up, indicating that the proposed system effectively promoted fine motor recovery of function.
4.	U. Sorrento, S. Archambault, Fung et al. (2018) ¹¹	A total of 13 healthy young adults (18–38 years old, 7 male and 6 female) (Quasi- experimental study)	Feil and Oberfeld CRIR Research Center of the Jewish Rehabilitatio n Hospital in Laval, Québec, Canada.	Instantaneous gait velocity, Stride length, Double limb support time	The paradigm was divided into three distinct gait epochs: pre- force, force, and post- force.	All 13 participants increased their instantaneou s gait veloci- ties when walking with tension in the leash in the

E-ISSN: 2582-2160 • Website: www.ijfmr.com • Email: editor@ijfmr.com

					The pre-force epoch consisted of the participant walking with a slack leash (i.e. no tension) for 30 s. Participants walked with this force for 60 s. The force on the hand was then removed and participants continued to walk with a slack leash for another 30 s.	changes in 10 and 20 N paired samples T- test revealed significant changes in stride length between legs Indicating less time spent in double-limb
5.	Padilla- Castañeda, Sotgiu, Barsotti, Frisoli et al. (2018) ¹²	Two healthy vol- unteers and ten patients (six males and four females) (Quasi- experimental)	USL 5 Rehabilitatio n Centre at Fornacette (Pisa), Italy	 (i) the ranges of motion with extendable goniometers. (ii) the strength of the affected hand by the Jamar strength test. (iii) the pain sensation using the VAS pain test. (iv) Italian version of the DASH Questionnaire 		JAMAR score was found to be negatively correlated with mean executed ROM during games.vas (moderate negatively correlated) DASH score found positively correlated with FE

2

E-ISSN: 2582-2160 • Website: www.ijfmr.com

6.		Twenty	Pisa, Italy			
	Bortone I.,	subjects were	,j	Kinesiological	Two motor	Obtained
	Leonardis D.,	enrolled in		Assessment in	tasks, the	results
	Mastronicola N.	the study and		real settings	first	reflected the
	et al $(2018)^{13}$	divided into		and with	involving	different
		three groups:		serious games	grasp-to-	motor
		i) CP/DD		(movement	reach and	abilities of
		group,		speed,	forearm	patients and
		consisting of		movement	pronation	participants,
		8 motor-		accuracy)	and	suggesting
		impaired		57	supination,	suitability of
		children; age			and the	the proposed
		range: 7-14			second	kinematic
		yrs) affected			involving	assessment
		with either			linear path	as a motor
		CP (3			tracking on	function
		children) or			different	outcome.
		DD (5			directions	
		children), ii)			with respect	
		TD group,			to the sagittal	
		consisting of			plane.	
		8 Typically			-	
		Developing				
		healthy				
		children; 8 -				
		16 yrs) iii)				
		AD group,				
		consisting of				
		4 healthy				
		ADults 24 -				
		32 yrs).				
		(Quasi-				
		experimental				
		study)				
7.		seven				
	Vargas,	neurologicall	Joint	Single vs.	Multi-	The hand
	Whitehouse,	y intact	Department	Dual	channel fully	maps located
	Huang, Zhu, Hu	subjects (6	of	Stimulation.	programmabl	on the left
	et al. $(2019)^{14}$	Male, 1	Biomedical	Comparison	e stimulator	and right
		Female, 20-	Engineering	Variation in	was used to	correspond
		35 years of	at University	Stimulation	deliver the	to the evoked
		age (within	of North	Delay.	single and	sensation
			Carolina-		dual	during single

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

				1		I
		subject	Chapel Hill	Short-term	electrical	stimulation,
		design)	and NC	Stability of	stimuli. A	while the
			State	Sensation.	hand map	center hand
			University		MATLAB	map shows
					interface was	the sensation
					used to	during dual
					record the	stimulations.
					location of	The results
					sensation	indicated that
					with a total of	the delay had
					108 hand	minimal
					regions. the	effect on the
					subjects were	haptic
					asked to	perception
					identify the	for a given
					locations of	set of
					the sensation,	electrodes.
					and the	with a
					sensation	moderate
					strength	agreement in
					according to	sensation
					a three-point	magnitude
					scale.	and a
						substantial
						agreement in
						the sensation
						regions.
8.	Georgiou, Islam,	1 female	PJ Care	Temporal gait	Prebaseline:	Due to RHC,
	Holland, Linden,	participant	residential	parameters:	subject asked	the time
	Price,	(case study)	care home in	stride cycle	to walk the	taken to
	Mulholland,	(11111)))	the United	time for both	length of 10-	complete a
	Perry et al.		Kingdom	legs in the	meter	stride was
	$(2020)^{15}$		0	base line,	runway six	
				with-cue and	time without	both legs.
				after-cue	wearing	This further
				conditions	bracelet.	supports the
					Baseline:	observatio-
					with bracelet	ns of the
					switched off.	physiother-
					With-cue:	apists that
					with bracelet	RHC has
					switch on	changed gait
					2	pattern, and
						Puttern, and

E-ISSN: 2582-2160 • Website: www.ijfmr.com

					After-cue: subject walk rhythm to memory	
9.	Vargas, Shin, Huang et al. (2020) ¹⁶	Ten neurologically intact subjects (seven males, three females, 20–35 years of age) (within subjects design)	University of North Carolina at Chapel Hill, US	Single vs. Dual Stimulation Comparison Variations in stimulation delay	The grid was placed parallel to the vector that connects the medial epicondyle of the humerus and the center of the axilla. Ordering of 2 objects.(18 trails) Ordering of 3 objects. (12 trails) Identification of random object (24 trails)	The majority of sensation regions remained unchanged during dual stimulation when compared with the single stimulations. Delay had minimal effect on the haptic perception for a given set of electrodes.
10.	Salaro C. Cattaneo D. Basteris A. et al (Feb 2020) ⁹	41 patients were participated in this study.Patients randomly assigned to either robot- based haptic training or purely sensorimotor group (Randomised Controlled Trail)	Unit Dept	9HPT and Action Research Arm Test (ARAT) to assess arm/ hand dexterity and functio	Two groups were trained with two planar robotic manipulandums with haptic simulation and sensorimotor rehabilitation (every epoch – 24 movements (4 rep for each 6 possible direction ,1 session – 45 min , total –	9HPT, Overall effect was significant more in haptic group than the sensorimotor group. ARAT score was more significant in haptic group than sensorimotor (Effect of exercise is

E-ISSN: 2582-2160 • Website: www.ijfmr.com

					8sessions (2session per week in non – consecutive days	only significant in pyramidal grou
11.	K. Shell, E. Pena, J. Abbas et al (June 2022) ⁷	Seven right- handed adult study participants (five males, two females) (Within subjects design)	Florida international university (FIU)	SD profile, ACR model (calculate equivalent ACR)	Seven study participants received haptic feedback delivered via multi-channel transcutaneous electrical stimulation of the median nerve at the wrist to receive the haptic feedback. xTouch delivered different percept intensity profiles designed to emulate grasp forces during manipulation of objects of different sizes and compliance.	The results of a virtual object classification task showed that the participants were able to use the active haptic feedback to discriminate the size and compliance of six virtual objects with success rates significantly better than the chance of guessing it correctly
12.	Altukhaim, George, Nagaratnam, Kondo, Hayashi et al. (2024)	Twenty-three healthy participants (seven men and 16 women), of which 21 were right-handed	In Tokyo, Japan	Utilization of reaction time (RT) was measured in response to a sense of threat	Two sessions: 1.Training session: Inphase condition and anti phase condition.	The median RTs were consistently low under anti-phase condition in 20 out of 23 participants,

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

(Exp	perimental	2.Evaluation	whereas	the
stud	y)	session:	median	RTs
		Inphase	of	three
		condition and	(participa	ants
		anti phase	1, 7 and	1 18)
		condition	were co	nsist-
			ently	high
			under in	-phas
			condition	ı

DISCUSSION

The use of haptic feedback is a promising approach in rehabilitation for a range of conditions that affect motor function, including stroke, multiple sclerosis, and other neuromotor impairments. The incorporation of haptic feedback into virtual reality, robotic-assisted therapy, and wearable devices has led to new and effective methods for improving motor learning, proprioception (body awareness), and the regaining of lost functions.

Studies indicate that kinesthetic haptic feedback enhances standing stability and locomotion, with improvements in balance and postural control, highlighting its potential for fall prevention and neuromuscular rehabilitation. Investigating how haptic forces affect walking adaptation reveals that haptic cues can modify walking patterns, offering a potential benefit for gait retraining in neurological conditions. This supports existing research that external sensory feedback can promote neuroplasticity and motor learning by reinforcing correct movement patterns.

The potential of haptic biofeedback in upper limb rehabilitation has been the subject of several studies, particularly in the context of stroke recovery and neurodegenerative diseases. The results of these studies indicate that the integration of haptic cues within virtual reality environments can lead to improvements in both grasping accuracy and overall hand function. Studies of robotic-assisted forearm rehabilitation in virtual reality have shown that incorporating haptics leads to better motor recovery, providing evidence for the effectiveness of multisensory rehabilitation approaches.

Compelling evidence from study table suggests that haptic-based interventions can be as effective, or even more effective, than traditional rehabilitation approaches. By providing accurate proprioceptive feedback, haptics can address sensory deficits and lead to greater functional improvements. Studies exploring the use of wearable haptics in immersive virtual reality rehabilitation programs for children with neuromotor impairments have revealed increased engagement and improvements in motor learning, suggesting that haptic technology holds significant potential for pediatric rehabilitation.

In addition to rehabilitation, haptic feedback is being investigated for its potential in perceptual training and enhancing the connection between cognitive processes and motor skills. Research highlights progress in artificial somatosensory feedback, which may lead to better prosthetic control, sensory re-education, and virtual interaction. A separate study explores how haptic rhythms might be used for movement coordination and timing rehabilitation, potentially helping patients with movement disorders.

One of the most significant advantages of haptic feedback is its capacity to improve the user's sense of embodiment and facilitate better integration of sensory information. Research has indicated that providing multiple forms of sensory feedback can strengthen the brain's internal representation of the body, which

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

in turn leads to greater patient engagement and improved outcomes in rehabilitation programs. This finding holds particular significance for virtual rehabilitation approaches, where the combination of immersive virtual environments and haptic cues has the potential to optimize both motor learning processes and overall recovery.

Our review concluded that the integrated haptic feedback into rehabilitation has shown promising results for gait, upper limb, and neurological rehabilitation, as well as sensory re-education and virtual immersion. By enhancing proprioception, motor control, and patient engagement, haptic technology offers a powerful tool for modern rehabilitation. Continued research and development of wearable, non-invasive, and intelligent haptic systems will be crucial for advancing personalized and effective interventions.

Although research strongly supports the use of haptic feedback in rehabilitation, some obstacles must be overcome. To make haptic feedback a standard part of clinical practice, we need consistent treatment methods, more information about its long-term effects, and easier access to the necessary devices. Furthermore, tailoring the feedback to a patient's real-time physiological responses could lead to even better results. Future research should explore the synergistic potential of haptic feedback and other neuromodulation techniques, including brain-computer interfaces, functional electrical stimulation, and adaptive AI-driven haptic systems, to develop advanced and responsive rehabilitation platforms.

REFERENCES

- 1. Jyothi BD, Krishnaiah RV. Haptic technology-a sense of touch. International Journal of Science and Research. 2013 Sep;2(9):381-4.
- 2. Steven M.LaValle Virtual Reality book
- Giri GS, Maddahi Y, Zareinia K. An application-based review of haptics technology. Robotics. 2021 Feb 5;10(1):29.
- 4. Goyal C, Vardhan V, Naqvi W, Arora S. Effect of virtual reality and haptic feedback on upper extremity function and functional independence in children with hemiplegic cerebral palsy: a research protocol. Pan African Medical Journal. 2022 Feb 22;41(1).
- 5. Afzal MR, Byun HY, Oh MK, Yoon J. Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients. Journal of neuroengineering and rehabilitation. 2015 Dec;12:1-1.
- 6. Burdea G. The role of haptics in physical rehabilitation. Haptic Rendering. 2008 May:517-29.
- 7. Shell AK, Pena AE, Abbas JJ, Jung R. Novel neurostimulation-based haptic feedback platform for grasp interactions with virtual objects. Frontiers in Virtual Reality. 2022 Jun 3;3:910379.
- 8. Yeh SC, Lee SH, Chan RC, Wu Y, Zheng LR, Flynn S. The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation. Journal of healthcare engineering. 2017;2017(1):9840273.
- Solaro C, Cattaneo D, Basteris A, Carpinella I, De Luca A, Mueller M, Bertoni R, Ferrarin M, Sanguineti V. Haptic vs sensorimotor training in the treatment of upper limb dysfunction in multiple sclerosis: a multi-center, randomised controlled trial. Journal of the neurological sciences. 2020 May 15;412:116743.
- Blouin M, Lalumière M, Gagnon DH, Chénier F, Aissaoui R. Characterization of the immediate effect of a training session on a manual wheelchair simulator with Haptic biofeedback: Towards more effective propulsion. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2014 Jul 2;23(1):104-15.

- 11. Sorrento GU, Archambault PS, Fung J. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults. Journal of neuroengineering and rehabilitation. 2018 Dec;15:1-1
- Padilla-Castañeda MA, Sotgiu E, Barsotti M, Frisoli A, Orsini P, Martiradonna A, Laddaga C, Bergamasco M. An Orthopaedic Robotic-Assisted Rehabilitation Method of the Forearm in Virtual Reality Physiotherapy. Journal of healthcare engineering. 2018;2018(1):7438609.
- Bortone I, Leonardis D, Mastronicola N, Crecchi A, Bonfiglio L, Procopio C, Solazzi M, Frisoli A. Wearable haptics and immersive virtual reality rehabilitation training in children with neuromotor impairments. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2018 Jun 13;26(7):1469-78.
- 14. Vargas L, Whitehouse G, Huang H, Zhu Y, Hu X. Evoked haptic sensation in the hand with concurrent non-invasive nerve stimulation. IEEE Transactions on Biomedical Engineering. 2019 Jan 27;66(10):2761-7.
- 15. Georgiou T, Islam R, Holland S, Van Der Linden J, Price B, Mulholland P, Perry A. Rhythmic haptic cueing using wearable devices as physiotherapy for huntington disease: Case study. JMIR Rehabilitation and Assistive Technologies. 2020 Sep 14;7(2):e18589.
- 16. Vargas L, Shin H, Huang HH, Zhu Y, Hu X. Object stiffness recognition using haptic feedback delivered through transcutaneous proximal nerve stimulation. Journal of neural engineering. 2019Dec 5;17(1):016002.
- 17. Altukhaim S, George D, Nagaratnam K, Kondo T, Hayashi Y. Enhancement of sense of ownership using virtual and haptic feedback. Scientific Reports. 2024 Mar 1;14(1):5140.