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Introduction and Preliminaries 

Let (𝑋, 𝑑) be a metric space. We denote the class of non empty and bounded subsets of X by 𝐵(𝑋). For 

𝐴, 𝐵 ∈  𝐵(𝑋), function 𝐷(𝐴, 𝐵) and 𝛿(𝐴, 𝐵) are defined as follows: 

𝐷(𝐴, 𝐵) =  𝑖𝑛𝑓 { 𝑑(𝑎, 𝑏) ∶  𝑎 ∈ 𝐴, 𝑏 ∈  𝐵 } 

𝛿(𝐴, 𝐵) =  𝑠𝑢𝑝 { 𝑑(𝑎, 𝑏) ∶  𝑎 ∈ 𝐴, 𝑏 ∈  𝐵 } 

If  𝐴 = { 𝑎 }   then we write 𝐷(𝐴, 𝐵)  =  𝐷(𝑎, 𝐵) and  𝛿(𝐴, 𝐵)  = 𝛿(𝑎, 𝐵). Also in addition, if 𝐵 = { 𝑏 }, 

then 𝐷(𝐴, 𝐵)  =  𝑑(𝑎, 𝑏) and 𝛿(𝐴, 𝐵)  =  𝑑(𝑎, 𝑏) . Obviously, 𝐷(𝐴, 𝐵) ≤ 𝛿(𝐴, 𝐵) . For all  𝐴, 𝐵, 𝐶 ∈

 𝐵(𝑋), the definition of 𝛿(𝐴, 𝐵) yields the following: 

 

𝛿(𝐴, 𝐵)  = 𝛿(𝐵, 𝐴) 

𝛿(𝐴, 𝐵) ≤ 𝛿(𝐴, 𝐶)  + 𝛿(𝐶, 𝐵) 

𝛿(𝐴, 𝐵)  = 0 iff  𝐴 =  𝐵 = { 𝑎 } 

𝛿(𝐴, 𝐵)  =  𝑑𝑖𝑎𝑚 𝐴   (Fisher 1981, and Iseki, 1983). 

 

Fixed point for multivalued functions is a vast chapter of functional analysis. In particular, the function 

𝛿(𝐴, 𝐵) has been used in many works in this area. Some of these works are noted in Choudhury [3], 

Fisher [7] and Fisher and Ise'ki [8]. 

We will use the following relation between two non empty subsets of a partially ordered set. 

Definition 1: (Beg and Butt, [2]) : Let A and B be two non empty subsets of a partially ordered set 

(𝑋, ≼). The relation between A and B is denoted and defined as follows: 

𝐴 ≼  𝐵, if for every 𝑎 ∈  𝐴 there 𝑒𝑥𝑖𝑠𝑡𝑠  𝑏 ∈  𝐵 such that  𝑎 ≼  𝑏. 

In 1984, M.S. Khan, M. Swalech and S. Sessa [9] expanded the research of the metric fixed point theory 

to a new category by introducing a control function which they called an altering distance function. 
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We will utilize the following control function which is also referred  to a Altering distance function. 

Definition 2 : (Khan et al. [9]):  A function  𝜓 ∶  [0, ∞)  →  [0, ∞)  is called a Altering distance 

function if the following properties are satisfied: 

i. 𝜓  is monotone increasing and continuous, 

ii. 𝜓(𝑡)  =  0  if and only if 𝑡 =  0. 

The above control function has been utilized in a large number of works in metric fixed point theory. 

Some recent references are Choudhury[4], Doric [5], Dutta and Choudhury [6], Naidu [10] and Sastry 

and Babu [11]. This control function has also been extended and applied to fixed point problems in 

probabilistic metric spaces, and fuzzy metric spaces. 

The purpose of this paper is to establish the existence of fixed point if multivalued mappings in partially 

ordered metric spaces. The mappings are assumed to satisfy certain inequalities which involved the 

above mentioned control functions. Further we have established that in the corresponding singlevalued 

cases of partial ordered condition of the metric space can be omitted if the function is continuous. 

 

Main Results 

Theorem 2.1:  Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋)  be a multivalued mapping such that the 

following conditions are satisfied; 

 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

4. 𝜓(𝛿(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)}) 

+𝛽 𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)})  + 𝛾 𝜓 (𝑑(𝑥, 𝑦)) 

For all comparable 𝑥, 𝑦 ∈  𝑋  where  𝛼, 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1  and 𝜓   is an 

altering distance function. Then T has a fixed point. 

Proof: By the assumption (i) there exists 𝑥1 ∈  𝑇𝑥0 such that 𝑥0 ≼  𝑥1. By the assumption (ii), 𝑇𝑥0 ≼

 𝑇𝑥1. Then there 𝑒𝑥𝑖𝑠𝑡𝑠 𝑥2 ∈  𝑇𝑥1 such that 𝑥1 ≼  𝑥2. Continuing the process we construct a monotone 

increasing sequence  { 𝑥𝑛}  in X such 𝑡ℎ𝑎𝑡 𝑥𝑛+1 ∈  𝑇𝑥𝑛  for all  𝑛 ≥   0. Thus we have 𝑥0 ≼  𝑥1 ≼  𝑥2 ≼

 𝑥3 ≼ . . . . . . ≼  𝑥𝑛 ≼   𝑥𝑛+1 ≼ . . . .. 

If there exists a positive integer N such that 𝑥𝑁  =  𝑥𝑁+1, then 𝑥𝑁 is a fixed point of T. Hence we shall 

assume that 𝑥𝑛 ≠  𝑥𝑛+1  for all 𝑛 ≥  0. 

Using the monotone property 𝑜𝑓 𝜓 and the condition (iv), we have for all 𝑛 ≥  0, 

𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤   𝜓(𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)) 

𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛+1)}) 

+𝛽 𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛+1), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛)})  +𝛾𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) 

𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}) 

+𝛽 𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1)})   + 𝛾 𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) 

 

There arise two cases. 

Case - 1, if we take 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}   =  𝑑(𝑥𝑛, 𝑥𝑛+1) then, 
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𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  
𝛼 + 𝛽 + 𝛾

1 − 𝛽
  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1)) 

 

Case - 2, if we take 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)}   =  𝑑(𝑥𝑛+1, 𝑥𝑛+2)  then, 

𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  
 𝛽 + 𝛾

1 − 𝛼 – 𝛽
  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1)) 

Since  0 < 𝛼 +  2𝛽 + 𝛾 <  1 in both cases, which implies 

𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  𝑘  𝜓(𝑑(𝑥𝑛, 𝑥𝑛+1))      (2.1) 

 

where  𝑘 =  𝑚𝑎𝑥 { 
 𝛽 +𝛾

1 −𝛼 –𝛽
,

𝛼 +𝛽 +𝛾

1 –𝛽
} . 

Therefore, 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  <   𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ≥  0 and  {𝑑(𝑥𝑛, 𝑥𝑛+1)}   is monotone decreasing 

sequence of non negative real numbers. Hence there exists an  𝑟 ≥  0 such that, 

𝑑(𝑥𝑛, 𝑥𝑛+1) →  𝑟   𝑎𝑠   𝑛 → ∞ .     (2.2) 

Taking the limit as  𝑛 → ∞  in (2.1) and using the continuity of 𝜓, we have 

𝜓 (𝑟) ≤  𝑘 𝜓 (𝑟) 

which is a contradiction unless  𝑟 =  0 . 

Hence, 

𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑛, 𝑥𝑛+1)  =  0      (2.3) 

Next we show that  { 𝑥𝑛}   is a Cauchy sequence. If otherwise, there exists an 𝜖 >  0 for which we can 

find two sequences of positive integers {   𝑚(𝑘) }  𝑎𝑛𝑑 { 𝑛(𝑘)}  such that for all positive integers k,  

𝑛(𝑘)  >  𝑚(𝑘)  >  𝑘 and (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖 . 

Assume that n(k) is the smallest such positive integer, we get,  𝑛(𝑘) >  𝑚(𝑘) >  𝑘 

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≥ 𝜖 and 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1)  < 𝜖. 

Now, 

𝜖 ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)−1)  +  𝑑(𝑥_(𝑛(𝑘) − 1), 𝑥𝑛(𝑘)) 

that is, 

𝜖 ≤ 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤ 𝜖 +  𝑑(𝑥𝑛(𝑘)−1, 𝑥𝑛(𝑘)) 

Taking the limit as  𝑘 → ∞   in the above inequality and (2.3), we have 

𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖      (2.4) 

Again, 

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1)  +  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1) +  𝑑(𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)) 

and, 

𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1) ≤  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑚(𝑘))  +  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) +  𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1) 

Taking the limit as  𝑘 → ∞  in the above inequality and (2.3) and (2.4), we have, 

𝑙𝑖𝑚𝑛→∞ 𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)  = 𝜖     (2.5) 

Again, 

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  +  𝑑(𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)) 

and, 

𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1) ≤  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  +  𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1) 

Taking the limit 𝑎𝑠  𝑘 → ∞  in the above inequality and (2.3) and (2.4), we have, 
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𝑙𝑖𝑚𝑛→∞   𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  = 𝜖         (2.6) 

 

Similarly we have that 

𝑙𝑖𝑚𝑛→∞  𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)  = 𝜖      (2.7) 

For each positive integer k, 𝑥𝑚(𝑘) and 𝑥𝑛(𝑘) are comparable. Then using the monotone property of 𝜓 and 

the condition (iv), we have 

𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤  𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) 

𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) ≤ 𝛼 𝜓(𝑚𝑎𝑥 {𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))}) 

+𝛽 𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘))})  + 𝛾 𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) 

By using (iv) and on taking  limit as  𝑘 → ∞  in the above inequality and (2.3) - (2.7), and using the 

continuity of 𝜓  we have, 

𝜓 (𝜖) ≤  𝑘 𝜓 (𝜖) 

which is contradiction by virtue of a property of 𝜓. 

𝐻𝑒𝑛𝑐𝑒 { 𝑥𝑛} is a Cauchy sequence. From the completeness of X, there exists a  𝑧 ∈  𝑋 such that 

𝑥𝑛 →  𝑧   𝑎𝑠   𝑛 → ∞      (2.8) 

By the assumption (iii), 𝑥𝑛 ≼  𝑧 , for all n. 

Then by the monotone property of 𝜓 and the condition (iv), we have 

𝜓 (𝑑(𝑥𝑛+1, 𝑇𝑧)) ≤   𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇(𝑧))) 

By using (iv) and on taking  limit as  𝑘 → ∞  in the above inequality from (2.3) and (2.8), and using the 

continuity of 𝜓  we have, 

𝜓(𝛿 (𝑧, 𝑇𝑧)) ≤  𝑘 𝜓((𝐷𝑧, 𝑇𝑧)) ≤  𝑘 𝜓 (𝛿 (𝑧, 𝑇𝑧)), 

which implies that,  𝛿 (𝑧, 𝑇𝑧)  =  0  or that  { 𝑧 } =  𝑇𝑧 . Moreover, z is a fixed point of T. 

Corollary 2.2: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑)  is a complete metric space. Let 𝑇 ∶  𝑋 → 𝐵(𝑋)  be a multivalued mapping such that the 

following conditions are satisfied; 

1. there exists 𝑥0 ∈ 𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼ 𝑇𝑦, 

3. if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

4. 𝛿(𝑇𝑥, 𝑇𝑦) ≤ 𝛼 max{ 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)} 

+𝛽 𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)}  + 𝛾 𝑑(𝑥, 𝑦) 

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝛼 , 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and \𝑝𝑠𝑖  is an 

altering distance function. Then T has a fixed point. 

Proof: On takeing an identity function in Theorem 2.1, then the above result is true and noting to prove. 

The following corollary is a spacial case of Theorem 2.1 when T is a singlevalued mapping. 

Corollary 2.3: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a mapping such that the following conditions 

are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼ 𝑇𝑥0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑇𝑥 ≼  𝑇𝑦, 

3. if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 
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4. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(max{ 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)}) 

+𝛽 𝜓 (𝑚𝑎𝑥 {𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)} )  + 𝛾 𝜓 (𝑑(𝑥, 𝑦)) 

For all comparable 𝑥, 𝑦 ∈ 𝑋  where  𝛼 , 𝛽 , 𝛾 ∈  (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and 𝜓   is an 

altering distance function. Then T has a fixed point. 

In the following theorem we replace condition (iii) of the above corollary by requiring T to be 

continuous. 

Theorem 2.4: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a mapping such that the following conditions 

are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤ 𝛼 𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)}) 

+𝛽 𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)})  + 𝛾 𝜓 (𝑑(𝑥, 𝑦)) 

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝛼 , 𝛽 , 𝛾 ∈   (0,1) such that  0 < 𝛼 +  2𝛽 + 𝛾 <  1 and 𝜓  is an 

altering distance function. Then T has a fixed point. 

Proof: We can treat T as a multivalued mapping in which case 𝑇𝑥 is a singleton set for every  𝑥 ∈  𝑋. 

Then we consider the same sequence {𝑥𝑛 }  as in the proof of Theorem 2.1, Arguing exactly as in the 

proof of Theorem 2.1, we have that { 𝑥𝑛}  is a Cauchy sequence and 𝑙𝑖𝑚𝑛→∞  (𝑥𝑛)  =  𝑧. Then the 

continuity of T implies that, 

𝑧 =  𝑙𝑖𝑚𝑛→∞ (𝑥𝑛+1)  =  𝑙𝑖𝑚𝑛→∞ 𝑇(𝑥𝑛)  =  𝑇𝑧 

and this proves that z is a fixed point of T. 

Theorem 2.5: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋)  be a multivalued mapping such that the 

following conditions are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼ 𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. if 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

4. 𝜓(𝛿(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)}) 

+  𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)})  +𝜓 (𝑑(𝑥, 𝑦)) 

−𝜙( 𝑚𝑎𝑥 { 𝛿(𝑥, 𝑇𝑥), 𝛿(𝑦, 𝑇𝑦), 𝛿(𝑥, 𝑇𝑦), 𝛿(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)}) 

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an altering distance function 𝑎𝑛𝑑 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function 𝑤𝑖𝑡ℎ 𝜙 (𝑡)  =  0 if and only 𝑖𝑓  𝑡 =  0. Then T has a fixed point. 

Proof:  We take the same sequence  { 𝑥𝑛}  as in the proof of Theorem 2.1. If there exists a positive 

integer N such that 𝑥𝑁 =  𝑥𝑁+1, then 𝑥𝑁 is a fixed point of T. Hence we shall assume that 𝑥𝑛 ≠  𝑥𝑛+1  

for all 𝑛 ≥  0. 

Using the monotone property of 𝜓 and the condition (iv), we have for all 𝑛 ≥  0, 

𝜓(𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤   𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇𝑥𝑛+1)) 

𝜓(𝛿(𝑇𝑥𝑛, 𝑇𝑥𝑛+1))

≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛+1)})   

+   𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛+1), 𝐷(𝑥𝑛+1, 𝑇𝑥𝑛)}) 

+ 𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) − 𝜙( 𝑚𝑎𝑥 {𝛿(𝑥𝑛, 𝑇𝑥𝑛), 𝛿( 𝑥𝑛+1, 𝑇𝑥𝑛+1), 𝛿(𝑥𝑛, 𝑇𝑥𝑛+1), 𝛿(𝑥𝑛+1, 𝑇𝑥𝑛), 𝑑(𝑥𝑛, 𝑥𝑛+1) }) 
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𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2))

≤    𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)} )  +   𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1)} ) 

+𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) 

−𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2), 𝑑(𝑥𝑛, 𝑥𝑛+2), 𝑑(𝑥𝑛+1, 𝑥𝑛+1), 𝑑(𝑥𝑛, 𝑥𝑛+1)}) 

𝜓𝑑(𝑥𝑛+1, 𝑥𝑛+2)  ≤    𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2)})  +   𝜓(𝑑(𝑥𝑛, 𝑥𝑛+2))  + 𝜓 (𝑑(𝑥𝑛, 𝑥𝑛+1)) 

−𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥𝑛, 𝑥𝑛+1), 𝑑(𝑥𝑛+1, 𝑥𝑛+2), 𝑑(𝑥𝑛, 𝑥𝑛+2), }) 

Then from the above inequality we have, 

𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤ 𝜓 (𝑑(𝑥𝑛+1, 𝑥𝑛+2))  − 𝜙 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) 

that is , 𝜙 (𝑑(𝑥𝑛+1, 𝑥𝑛+2)) ≤  0  which implies that  (𝑑(𝑥𝑛+1, 𝑥𝑛+2))  =  0,  or that  𝑥𝑛+1  =  𝑥𝑛+2, 

contradicting our assumption that is  𝑥𝑛 ≠ 𝑥𝑛+1 for each n. 

Therefore, 𝑑(𝑥𝑛+1, 𝑥𝑛+2)  <   𝑑(𝑥𝑛, 𝑥𝑛+1) for all 𝑛 ≥  0  and  { 𝑑(𝑥𝑛, 𝑥𝑛+1)}  is monotone decreasing 

sequence of non negative real numbers. Hence there exists 𝑎𝑛  𝑟 ≥  0 such that, 

𝑑(𝑥𝑛, 𝑥𝑛+1) →  𝑟   𝑎𝑠  𝑛 →  ∞       (2.9) 

Taking the limit 𝑎𝑠  𝑛 → ∞   and using the continuity of 𝜓, we have 

𝜓 (𝑟) ≤   𝜓 (𝑟)  − 𝜙 (𝑟) 

which is a contradiction 𝑢𝑛𝑙𝑒𝑠𝑠  𝑟 =  0 . 

Hence, 

𝑙𝑖𝑚𝑛→∞ 𝑑(𝑥𝑛, 𝑥𝑛+1)  =  0       (2.10) 

Next we show that  { 𝑥𝑛} is a Cauchy sequence. If not then using an argument to that given in Theorem 

2.1,    we can find two sequences of positive integers { 𝑚(𝑘)}  𝑎𝑛𝑑 {𝑛(𝑘)}  for which, 

𝑙𝑖𝑚𝑘→∞  𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))  = 𝜖       (2.11) 

𝑙𝑖𝑚𝑘→∞  𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)  = 𝜖      (2.12) 

𝑙𝑖𝑚𝑘→∞ 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1)  = 𝜖       (2.13) 

𝑙𝑖𝑚𝑘→∞ 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)  = 𝜖       (2.14) 

for each positive integer k, 𝑥𝑚(𝑘), 𝑥𝑛(𝑘) are comparable. Then using monotone property of 𝜓 and the 

condition (iv), we have 

𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤ 𝜓 (𝛿(𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) 

𝜓 (𝛿 (𝑇𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘))) ≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘))} ) 

+  𝜓 (𝑚𝑎𝑥 {𝐷(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)), 𝐷(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘))}) 

+𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) 

−𝜙 (max {
 𝛿(𝑥𝑚(𝑘), 𝑇𝑥𝑚(𝑘)), 𝛿(𝑥𝑛(𝑘), 𝑇𝑥𝑛(𝑘)), 𝛿(𝑥𝑚(𝑘), 𝑇𝑥𝑛(𝑘)),

𝛿(𝑥𝑛(𝑘), 𝑇𝑥𝑚(𝑘)), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
}) 

𝜓 (𝑑(𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1)} ) 

+  𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1)}) 

+𝜓 (𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))) 

− 𝜙 ( 𝑚𝑎𝑥 {
 𝑑(𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑛(𝑘), 𝑥𝑛(𝑘)+1), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)+1),

𝑑(𝑥𝑛(𝑘), 𝑥𝑚(𝑘)+1), 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘))
}) 
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Letting  𝑘 → ∞ in the above inequality, using (2.10)-(2.14) and the continuous of 𝜓  and 𝜙, we have 

𝜓(𝜖) ≤ 𝜓(𝜖)  − 𝜙(𝜖) 

which contradiction by virtue of the property of 𝜙 . 

Hence { 𝑥𝑛} is Cauchy sequence. From the completeness of X, there exists a  𝑧 ∈  𝑋 such that, 

𝑥𝑛 →  𝑧  𝑎𝑠     𝑛 → ∞     (2.15) 

by the assumption of (iii),  𝑥𝑛 ≼  𝑧 , for all n, 

Then by the monotone property of  𝜓 and the condition (iv), we have 

𝜓 (𝑑(𝑥𝑛+1, 𝑇𝑧)) ≤   𝜓 (𝛿(𝑇𝑥𝑛, 𝑇(𝑧))) 

𝜓 (𝛿 (𝑇𝑥𝑛, 𝑇(𝑧)))

≤   𝜓(𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇𝑥𝑛), 𝐷((𝑧), 𝑇(𝑧))})   +   𝜓 (𝑚𝑎𝑥 { 𝐷(𝑥𝑛, 𝑇(𝑧)), 𝐷((𝑧), 𝑇𝑥𝑛)} ) 

+𝜓 (𝑑(𝑥𝑛, (𝑧))) − 𝜙 ( 𝑚𝑎𝑥 {
 𝛿(𝑥𝑛, 𝑇𝑥𝑛), 𝛿((𝑧), 𝑇(𝑧)), 𝛿(𝑥𝑛, 𝑇(𝑧)),

𝛿((𝑧), 𝑇𝑥𝑛), 𝑑(𝑥𝑛, (𝑧))
}) 

Taking the limit as  𝑛 → ∞  in the above inequality and (2.10) and (2.15), we have, 

𝜓 (𝛿 (𝑧, 𝑇(𝑧))) ≤ 𝜓(𝐷(𝑧, 𝑇𝑧))  − 𝜙 (𝛿 (𝑧, 𝑇(𝑧))) 

which implies that, 

𝜓 (𝛿(𝑧, 𝑇(𝑧))) ≤ 𝜓(𝛿 (𝑧, 𝑇(𝑧)))  − 𝜙 (𝛿(𝑧, 𝑇(𝑧))) 

Which is contradiction unless 𝛿 (𝑧, 𝑇(𝑧))  =  0 or that,  𝑧 =  𝑇𝑧 ; that is Z is a fixed point of T. 

 

On taking 𝜓 an identity function in Theorem 2.5, we have the following result. 

Corollary 2.6: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝐵(𝑋)  be a multivalued mapping such that the 

following conditions are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0, 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. if 𝑥𝑛 → 𝑥 is a non decreasing sequence in X, then 𝑥_𝑛 \𝑝𝑟𝑒𝑐𝑒𝑞 𝑥 for all n, 

4. 𝛿(𝑇𝑥, 𝑇𝑦) ≤ max{ 𝐷(𝑥, 𝑇𝑥), 𝐷(𝑦, 𝑇𝑦)} 

+ max{ 𝐷(𝑥, 𝑇𝑦), 𝐷(𝑦, 𝑇𝑥)} +  (𝑑(𝑥, 𝑦)) − 𝜙( 𝑚𝑎𝑥 { 𝛿(𝑥, 𝑇𝑥), 𝛿(𝑦, 𝑇𝑦), 𝛿(𝑥, 𝑇𝑦), 𝛿(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)}) 

For all comparable 𝑥, 𝑦 ∈ 𝑋 where  𝜓  is an altering distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

 

The following corollary is a special case of Theorem 2.5 when T is a singlevalued mapping. 

 

Corollary 2.7: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a multivalued mapping such that the following 

conditions are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. 𝑖𝑓 𝑥𝑛 →  𝑥 is a non decreasing sequence in X, then 𝑥𝑛 ≼  𝑥 for all n, 

4. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})  +   𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}) 

+𝜓 (𝑑(𝑥, 𝑦))  − 𝜙( 𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)}) 
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For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an altering distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

In the following theorem we replace condition (iii) of the above corollary by requiring T to be 

continuous. 

Theorem 2.8: Let (𝑋, ≼) be a partially ordered set and suppose that there exists a metric d in X such 

that (𝑋, 𝑑) is a complete metric space. Let 𝑇 ∶  𝑋 →  𝑋 be a multivalued mapping such that the following 

conditions are satisfied; 

1. there exists 𝑥0 ∈  𝑋 such that { 𝑥0} ≼  𝑇𝑥_0 , 

2. for  𝑥, 𝑦 ∈  𝑋, 𝑥 ≼  𝑦 implies 𝑇𝑥 ≼  𝑇𝑦, 

3. 𝜓(𝑑(𝑇𝑥, 𝑇𝑦)) ≤   𝜓(𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦)})  +   𝜓 (𝑚𝑎𝑥 { 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥)}) 

+𝜓 (𝑑(𝑥, 𝑦))  − 𝜙( 𝑚𝑎𝑥 {𝑑(𝑥, 𝑇𝑥), 𝑑(𝑦, 𝑇𝑦), 𝑑(𝑥, 𝑇𝑦), 𝑑(𝑦, 𝑇𝑥), 𝑑(𝑥, 𝑦)}) 

For all comparable 𝑥, 𝑦 ∈  𝑋 where  𝜓  is an altering distance function and 𝜙 ∶  [0, ∞) →  [0, ∞) is any 

continuous function with 𝜙 (𝑡)  =  0 if and only if  𝑡 =  0. Then T has a fixed point. 

Proof: We can treat T as a multivalued mapping in which 𝑐𝑎𝑠𝑒 𝑇𝑥 is a singleton set for every  𝑥 ∈  𝑋. 

Then we consider the same sequence { 𝑥𝑛}  as in the proof of Theorem 2.5, Arguing exactly as in the 

proof of Theorem 2.5, we have that { 𝑥𝑛}  is a Cauchy sequence and 𝑙𝑖𝑚𝑛→∞ (𝑥𝑛)  =  𝑧.  Then the 

continuity of T implies that, 

𝑧 =  𝑙𝑖𝑚𝑛→∞ (𝑥𝑛+1)  =  𝑙𝑖𝑚𝑛→ ∞ 𝑇(𝑥𝑛)  =  𝑇𝑧 

and this proves that z is a fixed point of T. 
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