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ABSTRACT 

Electric vehicles (EVs) rely on high-performance batteries, making their health and efficiency critical for 

optimal operation. This paper presents an intelligent EV battery scanner and check-up system using 

machine learning to assess battery condition, detect faults, and predict potential failures. The system 

utilizes sensor data from the battery, including voltage, temperature, current, and charge cycles, which are 

analyzed through machine learning models. By leveraging classification and predictive algorithms, the 

system can identify battery degradation patterns, optimize charging strategies, and enhance overall battery 

lifespan. This approach ensures improved reliability, cost savings, and safety for EV users. The proposed 

model aims to revolutionize battery diagnostics, reducing maintenance efforts and promoting sustainable 

EV adoption. 
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I. INTRODUCTION 

Electric vehicles (EVs) have gained significant attention as a sustainable alternative to conventional 

internal combustion engine vehicles. The efficiency and performance of EVs primarily depend on the 

health and reliability of their batteries. However, battery degradation, overheating, and capacity loss over 

time pose major challenges, leading to reduced performance and increased maintenance costs. To address 

these issues, an intelligent EV battery scanner and check-up system using machine learning is 

proposed to monitor battery health, detect faults, and predict potential failures in real time. 

Machine learning techniques offer advanced analytical capabilities to process large datasets generated 

from EV batteries, including voltage, temperature, current, and charge-discharge cycles. By leveraging 

predictive models and classification algorithms, the system can accurately estimate the State of Health 

(SOH) and State of Charge (SOC) of the battery, providing insights for proactive maintenance and 

extending battery lifespan. The integration of artificial intelligence in battery diagnostics not only 

enhances vehicle safety but also optimizes energy consumption, improving overall EV efficiency. 

This study focuses on developing a data-driven battery health monitoring system that ensures early 

fault detection, minimizes unexpected breakdowns, and reduces operational costs for EV users. The 

proposed approach aims to revolutionize battery management by providing real-time diagnostics, making 

EVs more reliable and sustainable. 

 

II. LITERATURE SURVEY 

• X. Li et al. [1] proposed a machine learning-based framework for state of health (SOH) estimation  
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in lithium-ion batteries. Previous methods relied on empirical models and Kalman filters, but this study 

utilized deep neural networks (DNNs) and support vector regression (SVR) for accurate SOH 

prediction, achieving a mean absolute error below 2%. 

• R. Gupta et al. [2] introduced a hybrid deep learning approach for fault detection in electric vehicle 

(EV) batteries. While prior works focused on physics-based models, this study leveraged 

convolutional neural networks (CNNs) and long short-term memory (LSTM) networks to detect 

anomalies in battery voltage and temperature data. 

• M. Chen et al. [3] developed an inception-based deep learning model for battery health 

diagnostics using charge-discharge cycle data. Unlike traditional statistical methods, this model 

applied wavelet transformations and spectrogram analysis before feature extraction, improving 

accuracy in fault classification. 

• J. Zhao et al. [4] introduced a novel graph-based neural network (GNN) for analyzing EV battery 

performance. Unlike conventional time-series models, this work modeled battery cell 

interdependencies as a graph structure, achieving higher accuracy in degradation predictions. 

• K. Wang et al. [5] proposed a CNN-RNN hybrid model for real-time battery health monitoring. 

Prior research primarily used CNNs for feature extraction, but this study incorporated recurrent 

layers to model long-term temporal dependencies in battery discharge cycles, enhancing fault 

detection capabilities. 

• P. Singh and A. Verma [6] developed a multi-task learning framework for simultaneous SOC and 

SOH estimation in lithium-ion batteries. Unlike prior studies that estimated these parameters 

separately, this research used ResNet, MobileNet, and DenseNet architectures to integrate both tasks 

efficiently. 

• S. Ahmed et al. [7] introduced an IoT-integrated deep learning framework for EV battery 

monitoring using cloud-based predictive analytics. While previous studies focused on offline 

diagnostics, this work implemented real-time sensor data processing with deep neural networks for 

early fault detection. 

• L. Pham et al. [8] developed a Mixture of Experts (MoE) CNN framework for battery 

degradation analysis. Previous research demonstrated CNNs’ effectiveness in fault detection, but this 

study enhanced accuracy by combining multiple expert models for feature extraction. 

• H. Kim et al. [9] explored a feature fusion-based deep learning approach for battery anomaly 

detection, integrating multiple CNN-extracted features for improved classification performance. 

• J. Acharya et al. [10] proposed a personalized machine learning model for battery performance 

prediction, incorporating adaptive neural networks to tune models based on individual EV usage 

patterns. Unlike traditional generalized models, this research improved prediction accuracy for 

different driving behaviors. 

• P. Sharma et al. [11] introduced a deep learning approach for battery lifespan prediction using 

spectrogram-based feature extraction. Prior studies used time-series analysis, but this work 

combined discrete Fourier transform (DFT) and deep feature fusion, improving the accuracy of 

lifespan estimation. 

• V. Rao et al. [12] proposed a transformer-based neural network for battery charge cycle 

classification. Building on recent advancements in attention mechanisms, this study replaced 

conventional CNN models with transformers to better capture long-range dependencies in battery 

cycle data. 
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• D. Liu et al. [13] developed a hybrid deep learning model integrating convolutional networks 

with graph neural networks (GNNs) for battery degradation prediction. Unlike conventional 

CNN approaches that treat charge-discharge cycles independently, this study modeled dependencies 

between charging patterns using GNN-based feature extraction. 

• A. Mishra et al. [14] introduced an ensemble deep learning model for battery performance 

diagnostics, combining multiple CNN architectures such as ResNet, DenseNet, and EfficientNet to 

improve classification accuracy. 

• H. Nguyen et al. [15] proposed a lightweight AI framework for smartphone-based EV battery 

diagnostics using real-time phonopneumographic analysis of battery performance metrics. 

 

III. METHODOLOGIES USED 

1. Convolutional Neural Networks (CNNs) for Battery Fault Detection 

• CNNs are widely used for feature extraction from spectrogram representations of battery sensor 

data (voltage, temperature, current). 

• By leveraging deep layers and convolutional filters, CNNs capture spatial patterns in charge-

discharge cycles, improving battery fault classification accuracy. 

• Pre-trained models like ResNet and VGG16 enhance feature learning, but their computational cost 

remains a challenge in real-time embedded systems. 

2. Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTMs) for Battery                   

Health Prediction 

• Since battery performance data consists of time-series signals, RNNs and LSTMs help model 

temporal dependencies in battery degradation trends. 

• LSTMs address vanishing gradient issues, making them effective for predicting battery lifespan, 

State of Charge (SOC), and State of Health (SOH). 

3. Transformers and Self-Attention Mechanisms for Battery Degradation Analysis 

• Transformers, particularly Time-Series Transformers and Vision Transformers (ViTs), improve 

battery performance prediction by capturing long-range dependencies in sensor data. 

• Unlike CNNs, transformers process entire battery cycle spectrograms in parallel, enabling better 

context understanding. 

• However, their high computational requirements make real-time deployment challenging for 

embedded vehicle systems. 

4. Discrete Fourier Transform (DFT) and Spectrogram Analysis for Battery Signal Processing 

• DFT converts battery signals from the time domain to the frequency domain, revealing 

degradation-related frequency patterns. 

• By applying DFT-based spectrograms as input to deep learning models, battery anomalies and 

failure patterns can be detected more effectively. 

• However, noise interference and overlapping frequency bands can reduce classification accuracy. 

5. Autoencoders and Generative Models for Battery Fault Detection 

• Autoencoders are used for unsupervised anomaly detection, identifying unexpected deviations in 

voltage, current, and temperature readings. 

• Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) generate 

synthetic battery performance data, addressing data scarcity issues in training ML models. 

• However, ensuring realistic and diverse synthetic data remains a challenge. 
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6. Graph Neural Networks (GNNs) for Battery Cell Interconnectivity Analysis 

• GNNs model dependencies between individual battery cells by representing voltage, resistance, 

and charge-discharge relationships as structured graphs. 

• Unlike CNNs, which focus on local features, GNNs capture connectivity patterns across multiple 

battery modules, improving fault localization and predictive maintenance. 

• However, graph construction and optimization require additional computational resources. 

7. Ensemble Learning with Multiple Deep Models for Battery Condition Prediction 

• Combining multiple deep learning models, such as CNNs, RNNs, and Transformers, improves 

robustness in battery failure detection. 

• Techniques like stacking, bagging, and boosting help integrate the strengths of different models, 

improving SOH and SOC estimation accuracy. 

 

Fig 1: SYSTEM ARCHITECTURE 

 

Proposed Work 

This study aims to develop an advanced deep learning-based model for pulmonary disease recognition 

using phonopneumographic analysis. The proposed approach leverages Mel Spectrograms and Discrete 

Fourier Transform (DFT) to extract meaningful features from respiratory sounds. A Convolutional Neural 

Network (CNN) is then trained on these features to classify lung diseases. 

The workflow consists of several stages. First, data acquisition involves collecting phonopneumographic 

(lung sound) datasets such as ICBHI 2017. The preprocessing phase focuses on removing noise and 

converting raw audio into Mel Spectrograms using DFT. Feature extraction is then carried out by utilizing 

deep CNNs to learn spectral patterns of lung diseases. Following this, the CNN model is trained to 

categorize respiratory disorders, and the performance is evaluated using accuracy, precision, recall, and 

F1-score. 
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Before feeding the data into the deep learning model, lung sound signals must be transformed into a 

spectral representation. This is achieved using DFT and Mel Spectrograms, which capture frequency and 

amplitude variations over time. Below is a simple Python code snippet to load a lung sound file, apply 

DFT, and generate a Mel Spectrogram using the librosa library. 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import accuracy_score 

# Sample dataset: Voltage, Temperature, Charge Cycles, Health Status (0=Replace, 1=Maintenance, 

2=Healthy) 

data = np.array([ 

[3.7, 30, 200, 2], [3.5, 45, 400, 1], [3.2, 50, 600, 0], [3.8, 25, 150, 2], 

[3.6, 40, 350, 1], [3.1, 55, 700, 0], [3.9, 28, 120, 2], [3.3, 48, 500, 1] 

]) 

# Converting to DataFrame 

df = pd.DataFrame(data, columns=["Voltage", "Temperature", "Charge Cycles", "Health_Status"]) 

# Splitting features and labels 

X = df[["Voltage", "Temperature", "Charge Cycles"]] 

y = df["Health_Status"] 

# Train-test split 

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) 

# Random Forest Classifier 

model = RandomForestClassifier(n_estimators=10, random_state=42) 

model.fit(X_train, y_train) 

# Accuracy Check 

y_pred = model.predict(X_test) 

print("Model Accuracy:", accuracy_score(y_test, y_pred) * 100, "%") 

# Real-time battery health prediction 

def predict_battery_health(voltage, temp, cycles): 

prediction = model.predict([[voltage, temp, cycles]])[0] 

status = {0: "Replace Soon", 1: "Needs Maintenance", 2: "Healthy"} 

return f"Predicted Battery Status: {status[prediction]}" 

The provided Python code implements a machine learning-based battery health scanner for electric 

vehicles (EVs). It utilizes the Random Forest Classifier, a widely used supervised learning algorithm, to 

predict the battery's health status based on three key parameters: voltage, temperature, and charge 

cycles. The dataset is simulated with predefined values representing different battery conditions, classified 

into three categories—Healthy, Needs Maintenance, and Replace Soon. These categories allow the 

model to predict whether an EV battery is in optimal condition, requires servicing, or should be replaced 

to prevent failures. 

The dataset is converted into a Pandas DataFrame, where it is split into features (X) and labels (y). The 

features include voltage, temperature, and charge cycles, while the labels represent the battery's health 

status. A train-test split (80% training, 20% testing) is performed to ensure that the model can generalize 
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well to new data. The RandomForestClassifier is then trained using the training set, and its performance 

is evaluated by predicting labels for the test set and comparing them with actual values using 

accuracy_score. This step ensures that the model provides reliable predictions before being used for real-

world applications. 

Once the model is trained, a function named predict_battery_health() is defined to take real-time input 

values (voltage, temperature, and charge cycles) and classify the battery's health accordingly. This function 

utilizes the trained machine learning model to predict and return one of the three health statuses. A sample 

input (3.4V, 42°C, 450 charge cycles) is tested in the script, and the corresponding battery status is printed. 

This functionality simulates how a real-world battery monitoring system would work in an EV, allowing 

users to assess battery conditions dynamically. 

The implementation is scalable and can be extended for real-time monitoring by integrating IoT-based 

sensors that collect real battery data instead of using a simulated dataset. Additionally, the system can be 

deployed as a web or mobile application using Flask or Django, enabling users to interact with the battery 

health scanner through an intuitive dashboard. Future improvements may include deep learning techniques 

for more accurate predictions, cloud integration for remote monitoring, and the ability to handle different 

battery chemistries. This approach enhances battery lifespan, reduces unexpected failures, and 

promotes sustainable EV usage through proactive battery management. 

 

V. IMPLEMENTATION 

To implement the Electric Vehicles Battery Scanner and Check-up using Machine Learning, a well-

structured dataset is essential for training and evaluation. The dataset should include parameters such as 

voltage, current, temperature, state of charge (SoC), state of health (SoH), internal resistance, and 

charging/discharging cycles to capture the overall health and performance of EV batteries. Publicly 

available datasets like the NASA Battery Dataset, Oxford Battery Degradation Dataset, and CALCE 

Battery Dataset provide real-world battery performance data, including degradation trends under 

different operating conditions. Additionally, Kaggle hosts EV battery datasets that contain labeled battery 

health records, making them valuable for classification and anomaly detection tasks. 

Before training the machine learning model, preprocessing steps are applied to ensure the dataset is clean 

and meaningful. First, data cleaning is performed to remove missing values, duplicates, and 

inconsistencies. Noise reduction techniques, such as moving average filters and outlier detection, help 

eliminate fluctuations caused by sensor errors or environmental factors. Feature extraction is a critical 

step where statistical features (e.g., mean, variance of voltage and current), spectral features (e.g., Fast 

Fourier Transform for frequency analysis), and time-series features (e.g., long-term performance trends) 

are computed. To ensure consistency, normalization and scaling techniques like Min-Max Scaling or 

Standardization are applied. Lastly, segmentation divides long battery operation cycles into smaller time 

windows, enabling the model to recognize degradation patterns and potential faults more effectively. These 

preprocessing steps enhance data quality, allowing machine learning algorithms to predict battery health, 

detect anomalies, and recommend proactive maintenance for electric vehicles. 
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Fig 2:Root Node Analysis 

 

The implementation of the Electric Vehicles (EV) Battery Scanner and Check-up System using machine 

learning involves a combination of hardware and software components to ensure accurate battery health 

analysis. The system integrates IoT-based sensors that collect real-time battery parameters such as voltage, 

temperature, charge cycles, and internal resistance. These sensors transmit the data to a central processing 

unit, which preprocesses and normalizes the readings for further analysis. The collected data is then stored 

in a cloud-based or local database, enabling historical tracking and predictive maintenance. 

 

 
FIG 3: LOGIN PAGE 
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FIG 4: ANALYSIS PAGE 

 

The core of the system lies in its machine learning model, which is trained on large datasets of battery 

performance under different conditions. Supervised learning algorithms, such as regression models or 

deep learning networks, analyze the input parameters to predict battery life, detect anomalies, and provide 

recommendations for maintenance. The model is continuously updated using real-time data, ensuring that 

predictions remain accurate as battery technology evolves. Additionally, the system can classify battery 

health status into categories like "Healthy," "Needs Maintenance," or "Replace Soon" based on predefined 

thresholds. 

For user interaction, a web or mobile application is developed to provide real-time battery health insights 

and alerts. The application displays key battery parameters, predictive analysis results, and maintenance 

suggestions in an intuitive dashboard. Users, including vehicle owners and service providers, can receive 

automated notifications about potential issues, allowing for proactive maintenance and reduced risk of 

battery failures. The system can also support remote diagnostics, where authorized technicians can access 

battery health reports and suggest solutions without requiring physical inspection. 

The implementation also focuses on efficiency and scalability, ensuring compatibility with various EV 

battery models and brands. Security measures such as encrypted data transmission and authentication 

protocols are integrated to protect user information. Additionally, the system can be expanded to integrate 

with fleet management services for large-scale battery monitoring. By leveraging machine learning and 

IoT technologies, the EV Battery Scanner and Check-up System enhances battery lifespan, improves 

vehicle performance, and contributes to sustainable transportation solutions. 

 

VI. CONCLUSION 

The implementation of an Electric Vehicles (EV) Battery Scanner and Check-up System using 

Machine Learning represents a significant advancement in EV battery health monitoring and fault 
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detection. By leveraging deep learning algorithms, such as Convolutional Neural Networks (CNNs), 

Recurrent Neural Networks (RNNs), Long Short-Term Memory (LSTMs), and Transformer 

models, the system can efficiently analyze battery parameters, predict faults, and optimize performance. 

Additionally, Discrete Fourier Transform (DFT) and Spectrogram Analysis aid in identifying patterns 

related to battery degradation. 

Furthermore, the integration of Autoencoders, Generative Models, and Graph Neural Networks 

(GNNs) enhances fault detection accuracy, while Ensemble Learning techniques improve robustness in 

battery condition assessment. This AI-powered system enables real-time monitoring, early fault 

detection, and predictive maintenance, ensuring extended battery life and vehicle efficiency. 

Despite its advantages, challenges such as high computational requirements, noise interference, and 

real-time deployment constraints must be addressed. Future research can focus on lightweight deep 

learning models, edge computing, and advanced anomaly detection techniques to enhance system 

scalability and real-world applicability. 
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