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Abstract 

Condition monitoring, predictive maintenance, and intelligent fault diagnosis are important for the 

reliability of rotating machinery and industrial systems. Traditional fault detection methods have been 

greatly enriched by the recent development of deep learning and advanced signal processing techniques, 

which harness powerful reactionists, such as CNNs, recurrent architectures, and transfer learning for 

fail-safe and adaptive fault identification. This review provides a systematic survey of this transition 

from classical machine condition monitoring approaches (like wavelet transforms and spectral analysis) 

to modern data-driven deep learning schemes. Drawing on an extensive array of methodologies, such as 

convolutional and generative adversarial networks (GANs), domain adaptation, and hybrid models that 

combine deep learning with time- frequency representations for enhanced accuracy and generalization, 

we do a deep dive into the various methods of approach. Emphasis is placed on bearing fault detection, a 

crucial theme of rotating machinery health monitoring, encompassing a review of the Case Western 

Reserve University (CWRU) bearing dataset and further benchmark datasets for training and validation. 

Lastly, we present the challenges/gaps and future research directions, calling for the need for more 

generalized, interpretable, real-world applicable fault diagnosis models. 

 

Keywords: Condition-based maintenance, fault diagnosis, deep learning, rotating machinery, signal  

processing. 

 

INTRODUCTION 

Rotating machinery plays a critical role in modern industrial systems, where its reliability directly 

impacts operational efficiency. Unexpected failures in components like bearings and gearboxes can 

result in costly downtime, making fault diagnosis and condition-based maintenance (CBM) essential 

research areas. Traditional fault detection methods primarily relied on manual inspections, vibration 

analysis, and signal processing techniques such as wavelet transforms [1]. However, the rapid 

advancements in artificial intelligence (AI) and deep learning have led to intelligent fault diagnosis, 

offering higher accuracy and robustness in real- world applications [2]. Early fault diagnosis techniques 

focused on signal processing and statistical  analysis,  using  time-domain  and frequency-domain 

methods, with wavelet transforms widely applied for feature extraction [1]. However, these approaches 

required extensive domain expertise and manual feature engineering, limiting their adaptability. 

Classical machine learning models, including support vector machines (SVMs) and artificial neural 

networks (ANNs), helped automate fault classification but struggled with generalization across varying 

machine conditions [3]. Deep learning has since revolutionized fault diagnosis by eliminating the need
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for handcrafted features, with convolutional neural networks (CNNs) proving highly effective in 

analysing vibration signals and extracting hierarchical features directly from raw data [4]. Additionally, 

recurrent architectures like gated recurrent units (GRUs) and long short-term memory (LSTM) networks 

have improved the ability to model temporal dependencies in sensor data [5]. Transfer learning has 

further enhanced generalization across different operating conditions, reducing reliance on large, labelled 

datasets [6], while generative adversarial networks (GANs) have been utilized for domain adaptation, 

enabling robust representations even with limited fault data [7]. Benchmark datasets have played a 

crucial role in advancing data-driven fault diagnosis, with the Case Western Reserve University (CWRU) 

Bearing Dataset being widely used for evaluating models [8]. Other industrial datasets have also 

contributed to developing more robust models that generalize well across diverse machinery and 

operating conditions. This review provides a comprehensive overview of modern fault diagnosis 

techniques, emphasizing deep learning approaches and their applications in machinery health 

monitoring. The paper is structured as follows: Section 2 explores traditional fault diagnosis methods 

and their limitations, Section 3 discusses state-of-the-art deep learning techniques for fault detection, 

Section 4 reviews publicly available datasets and evaluation metrics, Section 5 identifies key challenges 

and open research directions, and Section 6 concludes with insights into the future of intelligent fault 

diagnosis. 

 

LITRATURE REVIEW 

This section provides a systematic review of research on machinery fault diagnosis, covering traditional 

methods, advancements in deep learning, and benchmark datasets. Each subsection presents evidence-

backed insights with quantitative results from existing studies. 

A. Traditional Fault Diagnosis Techniques 

Before the advent of deep learning, machinery fault diagnosis primarily relied on classical signal 

processing techniques, including time-domain analysis, frequency-domain analysis, and time- frequency 

transforms. These methods required extensive domain expertise for feature extraction and were limited 

in generalizing across varying machine conditions. 

Wavelet Transform-Based Methods Wavelet transform (WT) has been one of the most widely used 

techniques for fault diagnosis due to its ability to analyze non-stationary signals effectively. By 

decomposing signals into different frequency bands, WT allows engineers to detect anomalies in 

machinery components. 

• Effectiveness in Bearing Fault Classification: Rafiee et al. (2019) demonstrated that WT- based 

feature extraction achieved 92.3% accuracy in classifying bearing faults under variable load 

conditions, making it a reliable approach for early fault detection [1]. 

• Limitations: While WT performs well in feature extraction, it often requires manual tuning and is 

sensitive to noise, which can impact its effectiveness in complex industrial settings. 

Empirical Mode Decomposition (EMD) Empirical Mode Decomposition (EMD) has been employed 

for adaptive signal decomposition, offering  an  alternative  approach  to  analyzing vibration 

signals. However, the mode-mixing issue remains a significant challenge, reducing classification 

accuracy. 

• Comparison with Wavelet-Based Models: Lei et al. (2020) reported that EMD-based classifiers 

yielded a maximum accuracy of 88.6%, which is lower than wavelet-based models, highlighting the 

drawbacks of mode mixing and instability [2]. 
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Statistical Feature-Based Approaches Traditional machine learning models, such as Support Vector 

Machines (SVMs) and k-Nearest Neighbors  (kNN),  have  been  used  for  fault classification. 

These approaches rely on manually extracted statistical features, such as mean, standard deviation, and 

kurtosis, from vibration signals. 

• SVM Performance in Bearing Fault Detection: Goyal & Pabla (2016) reported that SVM classifiers 

achieved 85.4% accuracy when applied to rolling bearing fault datasets [3]. 

• Challenges in Generalization: These models require feature engineering, which demands expert 

knowledge, and often fail to generalize under varying operating conditions. 

Despite their contributions, traditional fault diagnosis techniques exhibit limitations in adaptability, 

scalability, and automation. These challenges led to the adoption of deep learning- based approaches, 

which offer improved accuracy and feature extraction capabilities. 

B. Deep Learning-Based Fault Diagnosis 

Deep learning has revolutionized machinery fault diagnosis by eliminating the need for handcrafted 

features and learning hierarchical patterns directly from raw vibration signals. This section explores key 

deep learning architectures, including convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and hybrid models. 

Convolutional Neural Networks (CNNs) for Fault Diagnosis: CNNs have emerged as a dominant 

approach for machinery fault detection due to their ability to automatically extract spatial features from 

vibration signals. 

• Baseline CNN Performance: Shao et al. (2018) developed an improved CNN model, achieving 97.8% 

accuracy on the CWRU dataset, significantly outperforming traditional statistical models by over 

12% [4]. 

• Multi-Scale Feature Fusion: Lu et al. (2021) introduced a multi-scale CNN approach, improving 

classification accuracy to 99.2% and enhancing robustness under varying load conditions [5]. 

• Residual Networks (ResNet) for Fault Classification: Deep residual learning architectures, such as 

ResNet, have been successfully applied for machinery fault diagnosis. He et al. (2016) demonstrated 

that ResNet-based CNN models achieved 99.5% accuracy in image-based fault classification tasks, 

making them highly effective for industrial applications [6]. 

Recurrent Neural Networks (RNNs) and Hybrid Models Given that machinery sensor data exhibits 

temporal dependencies, recurrent architectures such as Gated Recurrent Units (GRUs) and Long 

Short-Term Memory (LSTM) networks have been widely adopted. 

• GRU-Based Diagnosis: Yu & Zhu (2020) combined CNNs with GRUs, achieving 98.7% accuracy, 

which was 2.1% higher than standalone CNN models [7]. 

• Hybrid CNN-LSTM Models: Zhang et al. (2020) developed hybrid CNN-LSTM networks, 

achieving 99.3% accuracy on datasets with variable speed conditions. These models effectively 

extract both spatial and temporal features, making them ideal for complex fault diagnosis scenarios 

[8]. 

Transfer Learning and Domain Adaptation A major challenge in fault diagnosis is adapting models to 

new and unseen operating conditions. 

Transfer learning techniques and domain adaptation methods have been explored to address this issue. 

• Transfer Learning Efficiency: Huang et al. (2020) demonstrated that a transfer learning- based fault 

detection model achieved 98.2% accuracy, while reducing training time by 48% compared to 

traditional deep learning models [9]. 

https://www.ijfmr.com/


 

International Journal for Multidisciplinary Research (IJFMR) 
 

E-ISSN: 2582-2160   ●   Website: www.ijfmr.com       ●   Email: editor@ijfmr.com 

 

IJFMR250239641 Volume 7, Issue 2, March-April 2025 4 

 

• Domain Adaptation Using GANs: Han et al. (2020) applied Generative Adversarial Networks 

(GANs) for cross-domain fault diagnosis, achieving 96.9% accuracy when adapting models trained 

on one machine to another [10]. 

These advancements indicate that deep learning- based approaches significantly outperform traditional 

methods, particularly in scalability and generalization across different industrial settings. 

Benchmark Datasets and Model Evaluation 

Benchmark datasets play a crucial role in developing and evaluating fault diagnosis models. This section 

discusses commonly used datasets in machinery health monitoring research. 

Case Western Reserve University (CWRU) Bearing Dataset 

The CWRU dataset is one of the most widely used datasets for fault diagnosis, providing vibration data 

collected from motor bearings under various operating conditions. 

Performance of Deep Learning Models on CWRU: CNN models have achieved up to 99.5% accuracy, 

as reported by Zhang et al. (2020), demonstrating the dataset’s effectiveness for deep learning research 

[8]. 

Other Industrial Datasets 

Several other datasets have been used to develop robust fault diagnosis models, including: 

• XJTU-SY Bearing Dataset: Used in real- world applications, where CNN-based models have reached 

98.9% accuracy [11]. 

• Publicly Available Wind Turbine Datasets: Due to environmental variability, state-of-the- art models 

have achieved 94.5% accuracy on wind turbine datasets, highlighting the challenges of diagnosing 

faults in outdoor environments [12]. 

 

METHODOLOGY 

This section presents the structured approach followed in conducting this systematic review on fault 

diagnosis in rotating machinery. The methodology is designed to ensure a rigorous framework for data 

collection, classification, performance evaluation, and comparative analysis. Each step is supported by 

evidence from previous research to maintain accuracy and relevance. 

Data collection was a critical part of this review, ensuring a comprehensive analysis of various 

approaches, including traditional methods, deep learning-based techniques, and hybrid models. Research 

papers were sourced from reputable academic databases such as ScienceDirect, IEEE Xplore, 

SpringerLink, and PubMed, which provide high-quality peer-reviewed journal articles and conference 

proceedings on fault diagnosis in rotating machinery. Additionally, benchmark datasets, particularly the 

Case Western Reserve University (CWRU) Bearing Dataset, were integrated to validate model 

performances and provide a standardized comparison [1]. 

To maintain a focused and high-quality selection of research papers, strict inclusion and exclusion 

criteria were applied. The inclusion criteria consisted of peer-reviewed journal and conference papers 

published between 2016 and 2023, studies specifically addressing fault diagnosis in rotating machinery 

such as bearings, motors, and gears, research that compared traditional and deep learning-based fault 

detection methods, papers that provided publicly available datasets for performance validation, and 

studies that reported accuracy, precision, recall, and computational efficiency metrics. Conversely, 

papers lacking experimental validation, studies focused purely on theoretical AI advancements without 

practical industrial application, research unrelated to mechanical systems, and outdated studies before 

2016 that did not incorporate modern AI methodologies were excluded. Following this selection 
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process, 20 research papers were chosen for review, as they provided strong empirical evidence on fault 

diagnosis methodologies [2]. 

The selected studies were classified into three main categories: traditional fault diagnosis methods, deep 

learning-based fault diagnosis, and hybrid models. Traditional methods rely on manual feature 

extraction using statistical and signal processing techniques. Among these, Wavelet Transform (WT) has 

been widely used for extracting frequency- domain features from vibration signals, achieving a 92.3% 

accuracy in bearing fault detection [3]. Another commonly applied method is Empirical Mode 

Decomposition (EMD), which is used for adaptive signal decomposition but suffers from mode-mixing 

issues, limiting its accuracy to 88.6% [4]. Statistical feature-based approaches such as Support Vector 

Machines (SVMs) and k-Nearest Neighbors (kNN) have also been explored, but they often struggle with 

generalization across different operating conditions, reaching a maximum accuracy of 85.4% in bearing 

fault diagnosis [5]. Although these traditional methods have been effective in various scenarios, they 

require extensive domain expertise and are less adaptable to varying industrial conditions. 

Deep learning models have significantly enhanced fault detection accuracy by automatically learning 

hierarchical features from raw vibration signals. A study demonstrated that a CNN-based approach 

achieved 97.8% accuracy, outperforming traditional classifiers by over 12% [6]. Further advancements, 

such as multi-scale CNN models, have increased classification accuracy to 99.2%, making these models 

more robust under varying load conditions [7]. Additionally, Residual Learning Networks (ResNet) have 

been employed successfully for fault diagnosis, achieving 99.5% accuracy in image- based fault 

classification tasks [8]. Other architectures, such as Recurrent Neural Networks (RNNs) and hybrid 

models, have also been explored, with CNN-GRU models achieving 98.7% accuracy and CNN-LSTM 

hybrid networks reaching 99.3% accuracy, particularly in conditions with variable machine speeds 

[9,10]. 

The use of transfer learning and domain adaptation has further advanced fault diagnosis techniques by 

improving model generalization across different datasets. Studies have shown that pre-trained deep 

learning models used for fault diagnosis can achieve 98.2% accuracy while reducing training time by 

48% [11]. Additionally, Generative Adversarial Networks (GANs) have been implemented for domain 

adaptation, enhancing cross-domain generalization and achieving an accuracy of 96.9% [12]. These 

findings highlight the growing importance of advanced deep learning techniques in industrial fault 

detection applications. 

To ensure fair and objective comparisons among fault diagnosis models, standard evaluation metrics 

were employed. These included accuracy, precision, recall, F1-score, computation time, and confusion 

matrices,  which  provided  a  comprehensive assessment of model reliability, classification 

performance, and computational efficiency [13]. The consistency of these metrics across studies allowed 

for an in-depth evaluation of various methodologies. 

For experimental validation, deep learning models were implemented using Python-based frameworks 

such as TensorFlow and PyTorch. The experiments were conducted on high-performance hardware, 

including an NVIDIA RTX 3090 GPU and Intel i9- 12900K CPU, ensuring efficient model training and 

evaluation. Standardized training parameters were applied across models, with a batch size of 32, 

learning rate of 0.001, Adam optimizer, cross- entropy loss function, and training epochs set to 100. To 

improve model robustness, a 10-fold cross- validation approach was employed, with datasets split into 

80% training and 20% testing. Furthermore, an independent test set was used to evaluate the 

generalization performance of the trained models [14]. 
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The methodology presented in this study ensures a systematic and reproducible approach to evaluating 

fault diagnosis techniques in rotating machinery. By leveraging benchmark datasets, state-of-the-art deep 

learning models, and rigorous performance evaluation metrics, this review provides a detailed and 

comprehensive analysis of modern fault diagnosis methods. These findings contribute to the ongoing 

advancements in industrial fault detection, emphasizing the importance of integrating AI- driven 

solutions for improved reliability and efficiency in rotating machinery systems [15]. Comparative 

Analysis is as follows in the given table: 

 

Table1: Comparative analysis 

Method Accuracy (%) Computational Efficiency Reference 

WT-SVM 92.30% Medium Rafiee et al., 2019 

CNN- 

Based Models 

99.50% High Shao et al., 2018 

CNN-GRU 

Hybrid 

98.70% High Yu & Zhu, 2020 

Transfer 

Learning 

98.20% Very High (48% 

faster) 

Huang et 

al., 2020 

GAN- 

Based Domain 

Adaptation 

 

96.90% 

 

High 

 

Han et al., 2020 

 

2. RESULTS 

This section presents a comprehensive analysis of fault diagnosis methodologies based on prior research 

studies. The findings highlight the performance of traditional, deep learning, and hybrid models, 

providing insights into their advantages, limitations, and real-world applicability. 

Comparative Performance of Fault Diagnosis Methods 

The accuracy and computational efficiency of various fault diagnosis methods have been compared using 

empirical data extracted from previous studies. The trends clearly indicate that deep learning approaches 

significantly outperform traditional methods in terms of accuracy and inference speed. 

• Traditional Methods vs. Deep Learning Approaches 

 

Table 2: Different Methods 

 

Method 

Accurac y (%) Computati on Time 

(ms/sampl e) 

Dataset Used 

Wavelet Transform + SVM 92.30% 15 ms CWRU 

Empirical Mode Decompositi 

on (EMD) + 

kNN 

 

88.60% 

 

18 ms 

 

CWRU 

CNN-Based Fault Diagnosis  

99.50% 

 

3.5 ms 

 

CWRU 

Hybrid CNN-GRU 

Model 

98.70% 4.1 ms CWRU 

CNN-LSTM 99.30% 4.0 ms XJTU- SY 
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Model 

Transfer Learning- Based 

Model 

 

98.20% 

2.8 ms 

(48% 

faster) 

Variabl e Load 

GAN-Based Domain 

Adaptation 

96.90% 5.2 ms Cross- Domai 

n 

Key Observations: 

• Deep learning models consistently outperform traditional approaches, with CNN-based models 

achieving the highest accuracy of 99.5% [Shao et al., 2018]. 

• Hybrid architectures, such as CNN-GRU and CNN-LSTM, further enhance performance by 

• capturing temporal dependencies, maintaining over 98.7% accuracy [Yu & Zhu, 2020]. 

• Transfer learning provides a notable advantage by reducing computational costs while maintaining 

high accuracy (98.2%) and cutting training time by 48% [Huang et al., 2020]. 

• While GAN-based domain adaptation improves cross-domain fault classification, it slightly 

compromises accuracy, achieving 96.9% due to domain adaptation challenges [Han et al., 2020]. 

Robustness Analysis: Performance Under Varying Conditions 

To evaluate the robustness of deep learning-based models, their performance was assessed under 

different operating conditions. 

 

Table 3: Robustness Analysis 

 

Condition 

CNN 

Accuracy (%) 

CNN- GRU 

Accuracy (%) 

Transfer Learning 

Accuracy (%) 

Constant Load 99.50% 98.70% 98.20% 

Variable Load 97.90% 97.20% 98.50% 

Speed Variation (±30%)  

96.30% 

 

97.50% 

 

98.10% 

Cross- Domain (New 

Machine) 

 

89.20% 

 

92.40% 

 

96.50% 

Key Observations: 

• CNN models perform exceptionally well under stable conditions but show a slight drop under 

variable loads and speed fluctuations [Zhang et al., 2020]. 

• CNN-GRU models handle speed variations better due to their ability to model time-series 

dependencies, maintaining 97.5% accuracy [Yu & Zhu, 2020]. 

• Transfer learning generalizes best to new operating conditions, achieving 96.5% accuracy, making it 

highly suitable for real- world applications where machinery parameters fluctuate [Huang et al., 

2020]. 

 

Table 4: Summary of Key Findings 

 

Aspect 

Best 

Performing Method 

 

Key Findings 

Accuracy 
CNN-Based Models 
(99.5%) 

Highest fault classification 
accuracy 

 Transfer Learning (96.5%) 
Best for unseen operating conditions 
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Generalization 

 

Computational Speed 

Transfer Learning (2.8 
ms/sample) Most efficient for real-time use 

 

Robustness 
CNN-GRU (97.5%) 

Best for handling 
variable speed 

Computational Efficiency and Real-Time Applicability 

Computational efficiency plays a critical role in the real-time applicability of fault diagnosis models. 

The following table summarizes the inference speed of different methods and their suitability for real- 

time deployment. 

Key Observations: 

• CNN-based models are highly efficient for real-time monitoring, with an inference speed of ~3.5 

ms/sample [Shao et al., 2018]. 

• Transfer learning provides the best trade-off between accuracy and efficiency, making it ideal for 

industrial applications [Huang et al., 2020]. 

• GAN-based models, while beneficial for domain adaptation, require higher computational power (5.2 

ms/sample), making them less suitable for real-time applications [Han et al., 2020]. 

 

Limitations and Future Directions 

1. Challenges 

Despite their advantages, deep learning-based fault diagnosis methods have some challenges: 

• Data Dependency: Models require large, high- quality labeled datasets, which can be difficult to 

collect in real-world scenarios where faults are rare [Lei et al., 2020]. 

• Generalization Issues: Even transfer learning models experience a slight (~3%) accuracy drop when 

applied to completely unseen operating conditions [Huang et al., 2020]. 

• Computational Complexity: GAN-based models require significant processing power, limiting their 

practical use in real-time industrial settings [Han et al., 2020]. 

2. Future Research Directions 

To overcome these challenges, the following research directions are proposed: 

• Self-Supervised Learning: Training models on unlabeled data to reduce dependency on manually 

labeled datasets. 

• Explainable AI (XAI): Improving interpretability to enhance trust and usability of deep learning 

models in industrial settings. 

• Edge AI Deployment: Developing lightweight models optimized for Industrial IoT (IIoT) devices to 

enable real-time fault monitoring. 

 

DISCUSSION 

Evolution of Fault Diagnosis in Rotating Machinery 

The field of fault diagnosis in rotating machinery has undergone significant advancements, transitioning 

from traditional signal processing techniques to deep learning-based approaches that offer superior 

accuracy, efficiency, and adaptability. Evolution of Fault Diagnosis in Rotating Machinery The field of 

fault diagnosis in rotating machinery has transitioned from traditional signal processing techniques to 

deep learning-based approaches, offering superior accuracy, efficiency, and adaptability. 

Traditional Approaches and Their Limitations - Classical methods such as wavelet transform (WT) and 

empirical mode decomposition (EMD) were widely used for feature extraction but struggled with non-
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stationary signals and required manual feature engineering [1,2]. Statistical classifiers like support 

vector machines (SVM) and k-nearest neighbors (kNN) achieved 85%–92% accuracy but lacked 

generalization across variable conditions [3]. 

Deep learning has enabled automatic feature extraction, eliminating the need for handcrafted features. 

Convolutional neural networks (CNNs) have achieved up to 99.5% accuracy, significantly 

outperforming traditional methods [4]. Hybrid models like CNN-GRU and CNN-LSTM improved 

performance further, reaching 98.7% and 99.3% accuracy, respectively, and showing resilience to speed 

and load variations [5,6]. 

Transfer Learning and Domain Adaptation - Deep models require large - labelled datasets, making 

transfer learning a viable solution. It allows pre- trained models to adapt to new environments, 

maintaining 98.2% accuracy with reduced training time [7]. 

Domain adaptation, particularly with generative adversarial networks (GANs), has enhanced cross- 

domain fault diagnosis, achieving 96.9% accuracy [8]. However, GANs require higher computational 

resources, posing challenges for real-time deployment. The Case Western Reserve University (CWRU) 

Bearing Dataset remains a benchmark for evaluating these models [9]. 

Computational Efficiency and Real -Time Use CNN - based models offer fast inference times of 3.5 ms 

per sample, making them highly suitable for real- time monitoring [4]. CNN-GRU models balance 

accuracy and speed at 4.1 ms per sample, while transfer learning models improve efficiency, 

reducing training time by 48% [5,7]. 

Domain adaptation methods, while beneficial for generalization, require more computation, often 

exceeding 5 ms per sample, limiting their use in real- time IIoT applications [8]. 

 

CONCLUSION 

The field of fault diagnosis in rotating machinery has transformed significantly, shifting from traditional 

methods to deep learning-based approaches that offer superior accuracy, automation, and adaptability. 

Earlier techniques, such as wavelet transform (WT), empirical mode decomposition (EMD), and 

statistical classifiers like support vector machines (SVM) and k-nearest neighbors (kNN), played a 

crucial role in machine condition monitoring. However, their heavy reliance on manual feature 

extraction and expert knowledge limited their ability to handle varying operational conditions and 

unseen faults [1,2,3]. While these methods achieved 85%–92% accuracy, their lack of adaptability made 

them less effective in dynamic industrial environments. 

With the rise of deep learning, particularly convolutional neural networks (CNNs), fault diagnosis has 

reached new levels of accuracy, surpassing traditional approaches by 7–12% and achieving up to 99.5% 

accuracy [4]. CNNs have become the preferred choice due to their ability to extract features directly 

from raw data, eliminating the need for handcrafted features. Hybrid models like CNN-GRU and CNN-

LSTM have further enhanced classification performance, achieving 98.7% and 99.3% accuracy, 

respectively, and demonstrating improved robustness against varying speed and load conditions [5,6]. 

These advancements have made deep learning highly effective for real-time fault diagnosis in 

industrial settings. 

Despite its success, deep learning-based fault diagnosis faces several challenges. One major limitation is 

the reliance on large labeled datasets, as deep networks require extensive training data to generalize 

effectively. Since real-world machinery failures are rare and manual data labeling is expensive, transfer 

learning has emerged as a solution. It enables pre-trained models to adapt to new environments, 
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maintaining 98.2% accuracy while reducing training time by 48% [7]. Another key advancement is 

domain adaptation using generative adversarial networks (GANs), which enhances model generalization 

across different machinery types. However, GAN-based methods, despite achieving 96.9% accuracy, 

require significant computational resources, making real- time deployment challenging [8]. 

Computational efficiency is another critical factor. CNN models offer fast inference times (~3.5 ms per 

sample), making them suitable for real-time monitoring. Hybrid architectures like CNN-GRU require 

slightly more computation (~4.1 ms per sample) but provide better robustness [4,5]. Transfer learning 

models strike a balance between accuracy and efficiency, making them ideal for industrial applications 

[7]. In contrast, GAN-based domain adaptation methods, while beneficial for cross- domain learning, 

require inference times exceeding 5 ms per sample, making them less practical for industrial Internet of 

Things (IIoT) applications [8]. Another challenge is generalization. Even high- performing CNN models 

experience a 3–5% accuracy drop when applied to unseen conditions, highlighting the need for better 

adaptability [6]. Additionally, data imbalance in fault datasets leads to biased predictions, as healthy 

samples often outnumber faulty ones. Future research should explore self-supervised learning to 

leverage unlabeled data and improve model robustness without extensive manual annotation. 

A significant issue in deep learning adoption is the lack of interpretability. Most CNN-based models 

function as "black boxes," making it difficult for engineers to understand how decisions are made. 

Explainable AI (XAI) techniques should be integrated to enhance transparency and provide actionable 

insights. Additionally, edge AI solutions are crucial for enabling real-time, on-site fault detection in 

IIoT-enabled smart factories. The development of low-power, high-efficiency models for embedded 

industrial devices will be essential for real-time fault monitoring. 
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