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ABSTRACT 

The growing reliance on industrial machinery and critical infrastructure has increased the need for real-

time, accurate engine health monitoring to prevent failures and optimize performance. Traditional fault 

detection methods often rely on rule-based systems or shallow machine learning models, which may fail 

to capture complex patterns in engine behavior. In this study, we suggest a combination of Long Short-

Term Memory (LSTM) and Temporal Fusion Transformer (TFT) model for engine health classification. 

The LSTM captures sequential dependencies in sensor data, while the TFT enhances interpretability by 

focusing on multi-horizon forecasting and attention-based feature selection. The system is trained on a 

dataset of engine parameters, preprocessed using normalization techniques, and optimized with a real-

time adaptive retraining mechanism to improve model robustness over time. Experimental results 

demonstrate that our hybrid model achieves high accuracy, outperforming conventional machine 

learning approaches. Additionally, we integrate our model into a Flask-based web application to enable 

real-time monitoring and user-friendly fault detection. This research contributes to the advancement of 

intelligent predictive maintenance, reducing operational costs and enhancing industrial safety. 

 

Keywords:  Engine Health Monitoring, Long Short-Term Memory (LSTM), Temporal Fusion 

Transformer (TFT), Time-Series Forecasting, Predictive Maintenance, Sequential Data Modeling. 

 

1. INTRODUCTION 

In modern industrial and automotive applications, ensuring the health and reliability of engines is crucial 

for operational efficiency and safety. Unexpected engine failures can result in costly downtime, 

increased maintenance expenses, and potential safety hazards. Traditional methods of engine health 

monitoring rely on scheduled maintenance and manual inspections, which may not accurately predict 

failures in advance. With the advent of  deep learning, Predictive maintenance has gained substantial 

interest as a proactive approach to identifying engine faults before they lead to critical failures. In 

particular, time-series forecasting models, such as Long Short-Term Memory (LSTM) networks, have 

demonstrated superior capabilities in capturing temporal dependencies in sequential data. However, 

LSTMs may struggle with long-range dependencies and require enhancements for improved feature 

extraction. To address these challenges, this research presents a hybrid deep learning approach that 

integrates LSTMs with Transformer-based self-attention mechanisms. The proposed model leverages the 
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sequential learning abilities of LSTM, combined with the feature extraction power of  Multi-Head 

Attention to enhance prediction accuracy for engine health monitoring. 

 

 
Figure 1 : Working of TFT and LSTM 

 

LSTMs are a special form of recurrent neural networks (RNNS) designed for action vanishing gradient 

issues in long-term dependencies. They achieve this by using a storage cell and gating mechanisms that 

regulate the flow of information, selectively remembering or discarding past data as needed. This allows 

LSTMs to capture temporal patterns in sensor readings effectively. 

On the other hand, the Transformer-based Temporal Fusion Transformer (TFT) introduces self-attention 

mechanisms that weigh the importance of different time steps in a sequence. Unlike LSTMs, which 

process sequences in order, the Transformer architecture can analyze all time steps simultaneously, 

identifying global dependencies and key patterns across large temporal windows. The incorporation of 

Multi-Head Attention in TFT further enhances its ability to capture complex relationships between 

different features in the dataset. 

By combining the strengths of LSTMs and TFT, our model efficiently learns both short-term 

dependencies and long-range correlations in engine sensor data. This hybrid architecture enables more 

accurate anomaly detection and predictive maintenance, improving reliability and reducing operational 

costs. 

This study details the data collection, preprocessing, model architecture, and experimental evaluations of 

our hybrid LSTM-Transformer model for predictive maintenance. The results demonstrate the model’s 

effectiveness in identifying engine anomalies, providing a scalable and automated solution for engine 

health monitoring in industrial settings. 

 

2. LITERATURE REVIEW 

Engine health monitoring plays a crucial role in various industries, including automotive, aerospace, and 

manufacturing, where reliability and efficiency are critical. Traditional maintenance approaches such as 

corrective and preventive maintenance often lead to increased downtime and operational costs. 

Predictive maintenance, powered by data-driven models, has emerged as a robust alternative that 

enables early fault detection and proactive intervention. Early predictive maintenance techniques relied 

on rule-based systems and Analytical techniques like regression analysis and ARIMA (Autoregressive 

Integrated Moving Average) models. However, these methods struggled with complex time-series 
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dependencies and non-linear patterns present in real-world engine sensor data. The advent of machine 

learning and deep learning has significantly improved fault detection and prediction accuracy in engine 

health monitoring systems. 

Deep learning models, particularly Long Short-Term Memory (LSTM) networks, have demonstrated 

superior performance in sequential data modelling. LSTMs, a special type of recurrent neural network, 

effectively capture long-term dependencies by using memory cells and gated mechanisms that mitigate 

the vanishing gradient problem. Numerous studies have applied LSTMs to engine health monitoring, 

vibration analysis, and failure prediction. For example, Malhotra et al. (2016) applied LSTMs for 

anomaly detection in time-series data, proving their capability in capturing temporal dependencies.  

Similarly, Yu et al. (2019) used stacked LSTMs for predictive maintenance of industrial machinery, 

demonstrating their effectiveness in early fault prediction. Despite their success, LSTMs face limitations 

in handling long-range dependencies and multi-scale temporal features, which are critical for complex 

systems like engines. This has led to the integration of Transformer-based architectures to improve 

interpretability and prediction robustness. 

The Transformer model, originally introduced by Vaswani et al. (2017) for Natural language processing 

has been leveraged for time-series forecasting because of its effectiveness in capturing long-term 

dependencies. The Temporal Fusion Transformer (TFT), proposed by Lim et al. (2019), extends the 

Transformer framework by incorporating specialized mechanisms for multi-horizon forecasting and 

attention-based feature selection. Key features of TFT include a multi-head attention mechanism that 

allows the model to concentrate on various segments of the input sequence, an LSTM-based encoder-

decoder that retains sequential information while enhancing feature extraction, gating mechanisms that 

control information flow to prevent overfitting and redundant feature selection, and static and temporal 

feature fusion that integrates static metadata, such as engine specifications, with dynamic sensor data for 

improved fault prediction. 

Several studies have demonstrated the effectiveness of TFT in predictive maintenance. For instance, Wu 

et al. (2021) applied TFT for equipment health prediction, showing superior performance compared to 

conventional LSTMs and GRUs. Similarly, a comparative study by Liu et al. (2022) highlighted TFT’s 

robustness in handling noisy sensor data and long-range dependencies in industrial applications. Recent 

advancements have explored the combination of LSTMs and Transformers to leverage the strengths of 

both architectures. Hybrid models integrate LSTM layers for sequential pattern learning with 

Transformer-based attention mechanisms for enhanced feature extraction. Studies indicate that this 

fusion results in improved generalization, reduced prediction errors, and greater resilience to sensor 

noise. 

For instance, Zhou et al. (2023) proposed a hybrid LSTM-Transformer model for predictive 

maintenance in automotive engines, demonstrating higher fault detection accuracy than standalone 

LSTMs or Transformers. Inspired by these findings, this research implements a Hybrid LSTM + 

Temporal Fusion Transformer (TFT) model to predict engine faults based on multi-sensor time-series 

data. The literature suggests that while LSTMs effectively capture temporal dependencies, they struggle 

with long-range patterns and complex feature selection. Transformer-based architectures, particularly 

TFT, address these limitations by leveraging attention mechanisms and multi-horizon forecasting 

capabilities. A hybrid LSTM + TFT approach is expected to improve predictive accuracy and robustness 

in engine health monitoring applications. 
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3. METHODOLOGY 

3.1  Existing System 

The existing system utilizes a stacked ensemble deep learning model combining algorithms like Random 

Forest, SVM, and  Gradient Boosting to predict vehicular engine health. It classifies engine health into 

four categories (Good, Minimal, Moderate, Critical) based on sensor data, enabling proactive 

maintenance and reducing downtime through real-time monitoring and fault detection. 

Disadvantages  

High computational complexity makes it challenging to implement on edge devices in vehicles, raising 

scalability and     deployment concerns. 

The model has limited real-world validation, as it has been tested primarily on synthetic data, leading to 

uncertainties about its performance under diverse vehicle operating conditions and environments. 

3.2  Proposed System 

This study employs a Hybrid LSTM + Temporal Fusion Transformer (TFT) model to predict engine 

health status based on sensor data. The methodology consists of several stages, including data collection 

and preprocessing, sequence generation, model architecture design, training and evaluation.  Each of 

these stages is described below. 

 

 
Figure 2 : Proposed System Architecture 

 

    The Proposed System Architecture outlines the workflow for engine health prediction using a Hybrid 

LSTM + Temporal Fusion Transformer (TFT) model. The process begins with data collection, where 

sensor readings related to engine health, such as lubrication oil pressure, fuel pressure, and coolant 

temperature, are gathered over time. Next, the raw data undergoes preprocessing, including feature 

extraction and data normalization, to remove inconsistencies and scale values appropriately. The data 

preparation step involves transforming the dataset into time-series sequences, typically 30-time-step 

windows, to capture temporal dependencies effectively. 

    The Hybrid LSTM + TFT model is then built with an input layer, LSTM encoder, multi-head attention 
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(TFT mechanism), LSTM decoder, feature fusion, and a fully connected layer, ensuring an optimal 

balance between sequential learning and feature selection. Once the architecture is defined, the model is 

compiled with the Adam optimizer and a binary cross-entropy loss function to optimize the learning 

process. During the training phase, the model learns patterns from sensor sequences, refining its weight 

parameters using training and validation data. After training, the best-performing model is saved as 

engine_health_hybrid_model.h5 for future predictions. 

     For performance assessment, an evaluation and analysis step is conducted, using key metrics such as 

accuracy, and loss, ensuring the model’s reliability. The trained model is then deployed as a fault 

prediction system, allowing users to upload engine sensor data for real-time analysis via a Flask-based 

web application. Based on the input data, the system classifies engine health conditions as either " No 

Fault " or " Fault Detected! ", supporting predictive maintenance efforts.  

3.2.1 Dataset Collection  

    The dataset used in this study comprises time-series sensor readings from an engine, including 

parameters such as lubrication oil pressure, fuel pressure, coolant pressure, lubrication oil temperature, 

coolant temperature, engine RPM, and timestamps. These parameters are essential indicators of engine 

health and are continuously recorded over time. The dataset, stored as engine_data.csv, provides 

sequential observations that capture fluctuations in engine performance. To improve the model's 

forecasting accuracy, additional time-based features—hour, day, and month—are extracted from the 

timestamp column. These features allow the model to learn periodic variations in engine behaviour, 

improving its ability to detect potential faults. 

 

Table 1 : Dataset head before processing 

 
 

3.2.2  Data Processing   

    Before training, the raw dataset undergoes preprocessing and transformation to ensure consistency and 

stability. The first step involves timestamp conversion, where the "Timestamp" column is transformed 

into datetime format, and new columns for hour, day, and month are generated to incorporate temporal 

dependencies. Next, the data is sorted and cleaned to maintain sequential integrity, ensuring that missing 

values are handled appropriately. Since engine sensor values have varying numerical ranges, feature 

scaling is applied using MinMaxScaler, which normalizes all numerical features between 0 and 1 to 

prevent bias toward larger numerical values. The fitted scaler is then saved as scaler.pkl for use during 

real-time predictions. 

    To enable the model to capture temporal dependencies, sequence generation is performed. The dataset is 

structured into 30-time-step sequences, meaning that each input sample consists of 30 consecutive 

sensor readings, and the corresponding output represents the engine’s health status in the subsequent 
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time step. This approach ensures that the model can learn from past patterns to anticipate future 

conditions. The cleaned and transformed dataset is then stored as preprocessed_engine_data.csv, making 

it ready for model training. 

 

Table 2 : Dataset head after processing 

 
 

3.2.3  Train and Test  

To evaluate the model's forecasting ability, the dataset is split into 80% for training and 20% for testing, 

ensuring assessment on unseen data for better generalization. The training portion is utilized to fine-tune 

model parameters by learning from past engine sensor readings, while the testing set is designated for 

measuring performance on previously unobserved engine conditions.  

During training, batch processing is implemented with a batch size of 32, allowing for efficient gradient 

updates and faster convergence. To preserve the best-performing model, model checkpointing is applied, 

saving the trained model as engine_health_hybrid_model.h5 once optimal accuracy is achieved. Finally, 

the model's performance is assessed using multiple metrics, including accuracy and loss, with the final 

results stored in final_model_results_hybrid.json for further analysis. 

3.2.4  Algorithms  

This study employs a Hybrid LSTM + Temporal Fusion Transformer (TFT) model, combining 

sequential learning and attention-based feature selection to enhance predictive accuracy. The 

architecture consists of several key components. The LSTM Encoder extracts long-term dependencies 

from input sequences using memory cells, allowing the model to retain crucial patterns over extended 

time horizons. The Multi-Head Attention Mechanism (TFT) improves interpretability by enabling the 

model to prioritize the most significant features at each time step while ensuring robustness against 

noisy data. 

To stabilize training, Layer Normalization is applied, preventing vanishing/exploding gradients and 

improving convergence. The LSTM Decoder processes refined features extracted by the attention 

mechanism, reconstructing meaningful temporal patterns. Finally, a Fully Connected Layer maps these 

extracted representations to a binary classification output, determining whether a fault is detected in the 

engine. This hybrid architecture ensures efficient and reliable engine fault detection, making it well-

suited for real-world predictive maintenance applications. 

3.2.5  Tools and Platforms used  

The research was conducted using Python as the primary programming language, with TensorFlow and 

Keras frameworks for developing and training the Hybrid LSTM + Temporal Fusion Transformer (TFT) 

model. Data preprocessing was performed using NumPy, Pandas, and Scikit-learn, with MinMaxScaler 
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applied for feature normalization. VS Code was utilized for model development and debugging, 

providing an efficient coding environment with extensions for deep learning. Matplotlib  was used for 

visualizing training performance. The real-time fault detection system was deployed using Flask, with 

HTML, CSS  used for building the web interface.  

 

4. RESULTS & DISCUSSION 

The results obtained from training, validation, and testing of the Hybrid LSTM + Temporal Fusion 

Transformer (TFT) model demonstrate its effectiveness in engine health prediction. The system's 

performance was assessed through training and validation accuracy, training and validation loss, as well 

as real-time predictions via a Flask-based interface. The findings are discussed in detail below. 

 

 
Figure 3 : System Interface 

 

The system interface (third image) displays the test accuracy as 95.96% and a test loss of 0.0906, which 

further validates the model’s robustness. The high accuracy implies that the Hybrid LSTM + TFT model 

successfully distinguishes between healthy and faulty engine conditions with minimal misclassification. 

The relatively low test loss indicates that the model maintains good stability when making predictions on 

new data. 

 

 
Figure 4 : Training and Validation Accuracy 
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The graph illustrates the training and validation accuracy of the hybrid model across 100 epochs. In the 

initial stages, the model improves rapidly, attaining high accuracy within the first 10 epochs. The 

training accuracy approaches 100%, while the validation accuracy stabilizes at a comparably high level, 

demonstrating effective learning from the data. Minor fluctuations in training accuracy are common in 

deep learning models but tend to smooth out over time. The high validation accuracy indicates strong 

generalization to unseen data, making the model suitable for engine fault detection. 

 

 
Figure 5 :  Training and Validation Loss 

 

Figure - 5 illustrates the training and validation loss trends during model training. The training loss 

decreases sharply within the first few epochs, approaching near-zero values, which indicates efficient 

learning of engine health patterns. However, the validation loss exhibits minor fluctuations and 

gradually increases toward the later epochs. This suggests a slight overfitting issue, where the model 

performs exceptionally well on training data but starts losing generalization on unseen data. Despite this, 

the low validation loss in earlier epochs confirms that the model effectively captures important engine 

fault patterns. 
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Figure 6 :   Real-Time Fault Prediction System 

 

Figure - 6 illustrate the real-time prediction system developed using Flask. Users upload a CSV file 

containing engine sensor data, and the model processes it to determine the engine’s condition. In the first 

prediction example, the system successfully classifies the engine as faulty, displaying a warning 

message: "🚨 Fault Detected!". This functionality ensures that the model is suitable for deployment in 

practical applications for predictive maintenance, allowing early detection of engine malfunctions and 

preventing costly failures. 

 

5. CONCLUSION  

The Transformer Based Deep Learning for Optimized Vehicular Engine Health Monitoring System 

provides an advanced and efficient solution for real-time engine fault detection and predictive 

maintenance. Utilizing Long Short-Term Memory (LSTM) and Temporal Fusion Transformers(TFT), 

the system analyzes time-series sensor data with high accuracy, outperforming traditional machine 

learning models such as Random Forest and SVM. The Flask-based deployment enables seamless user 

interaction, making it a scalable and practical tool for vehicle diagnostics. 

The proposed system helps reduce unexpected engine failures, optimize maintenance schedules, and 

enhance road safety by providing early fault detection. It classifies engine conditions based on sensor 

readings such as temperature, oil pressure, and RPM, allowing users to take preventive actions before 

critical failures occur. The real-time predictions ensure minimal latency, making it suitable for 

automotive, fleet management, and industrial applications. 

 

6.  FUTURE SCOPE 

The Transformer Based Deep Learning for Optimized Vehicular Engine Health Monitoring System can 

be enhanced by integrating vehicle-specific diagnostics, enabling deeper insights into engine 

performance and component-level health. Future versions could be deployed directly on edge devices 

within vehicles, reducing latency and minimizing reliance on cloud infrastructure for real-time fault 

detection. Advanced visualization tools such as 3D engine models and augmented reality (AR) overlays 

can assist in interactive maintenance procedures, allowing technicians to simulate, analyze, and diagnose 

faults visually. Additionally, AI-powered dashboards with real-time analytics will improve predictive 

maintenance, enhancing vehicle reliability, Security and performance optimization in the automotive 
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industry. 
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