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Abstract 

The main element thought to be responsible for the decline the clients are distinct, they are typically 

connected. In FMTL, a in federated learning (FL) performance is the dissemination of non- 

regularization term that captures the relationships between the independent and identically distributed 

(non-IID) data among clients. clients' models is minimized to promote mutual impact between the 

Research groups are very interested in a number of methods for clients' models. Regretfully, the 

FMTL problem has not explicitly 

handling non-IID data, including federated multitask learning taken these linkages into account. 

Furthermore, there is typically 

(FMTL) and personalized FL. In order to explicitly utilize the less research done on FMTL 

algorithms that are nonconvex and 

relationships between the client models for multitask learning, we communication-decentralized 

with guaranteed convergence. 

first define the FMTL issue using Laplacian regularization. Next, we present a fresh perspective on 

the FMTL problem that demonstrates for the first time that the formulated FMTL problem is 

applicable to both conventional and customized FL. Additionally, we suggest two algorithms, FedU 

and decentralised FedU (dFedU), to address the FMTL problem in decentralised and 

communication-centralised schemes, respectively. In theory, we demonstrate that both methods' 

convergence rates result in sublinear speedup of order 1/2 for nonconvex objectives and linear 

speedup for strongly convex objectives. Through experiments, we demonstrate that our algorithms 

perform better than the standard algorithms pFedMe and Per-FedAvg in customized FL settings, 

MOCHA in FMTL settings, and FedAvg, FedProx, SCAFFOLD, and AFL in FL settings. 

 

Keywords: Laplacian regularization, federated learning (FL), federated multi-task learning (FMTL), and 

personalized learning. 

 

I . INTRODUCTION 

A promising distributed and privacy-preserving technique for creating a global model from a large number 

of handheld devices is federated learning (FL), which has recently gained attention [1], [2], [3], and [4]. 

FL has several futuristic uses, including identifying potential disease symptoms (e.g., diabetes, heart 

attack, stroke). Most of the crime cases are not properly recorded and followed. Using the proper data only, 

government can initiate, prevention and mitigation methodologies through campaign and officials. using 

wearable technology in healthcare systems [5, 6, 7], or using Internet-of-things devices in smart cities [8, 
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9] to forecast the likelihood of disasters. The naturally non-independent and identically distributed (non-

IID) data distributions among clients are one of the main obstacles in FL [10], [11]. The generalization 

error of the FL global model on each client's local data rises sharply with the number of data distribution 

discrepancies between clients [12], [13]. 

Federated multitask learning (FMTL) [16] and personalized FL [14], [15] have been suggested as ways to 

deal with non-IID data distributions among clients. The goal of Personalized FL is to create a global model 

that can be used to identify a "personalized model" for the local data of each client. In this case, the global 

model is regarded as the "agreed point" from which each client can begin customizing its model according 

to its diverse local data distribution. Motivated by multitask learning frameworks, FMTL seeks to 

concurrently learn distinct models, in contrast to personalized FL [17], [18]. Every client's data distribution 

is fit by one of these models. Therefore, without creating a global model like personalized FL, FMTL 

immediately tackles the problem arising from non-IID data distributions. However, it is noted from the 

perspective of local data at clients that clients with comparable characteristics (e.g., area, time, age, and 

gender) are likely to exhibit similar behaviors. As a result, even though the models of The  following  

are  this  work's  primary  contributions. 

1. Using Laplacian regularization, we create an FMTL issue that explicitly utilizes the relationships 

between the client models. 

2. To address the defined FMTL problem, we provide the decentralized FedU (dFedU) and 

communication-centralized FedU algorithms. Additionally, we examine how quickly FMTL 

algorithms with convex and nonconvex objective functions converge. 

3. Using actual datasets that represent the non-IID data distribution across clients, we empirically assess 

FedU and dFedU's performance. We demonstrate that FedU and dFedU perform better than the 

standard algorithm FedAvg in FL settings, the conventional algorithm MOCHA in FMTL conditions, 

and pFedMe and Per-FedAvg in customized FL settings with respect to local accuracy. 

 

II.RELATED WORK 

A. FEDERATED LEARNING: 

FedAvg [1], one of the first FL works, creates the global model by averaging the local stochastic gradient 

descent (SGD) updates. An array of techniques [11], [19], [20], [21], and [22] are shown to enhance the 

global model's resilience in non-IID contexts. FedProx [19], for instance, addresses the statistical 

heterogeneity of clients by appending a proximal term to the local aim. 

B. PERSONALIZED FL: 

A number of customized FL strategies have been put out to address the problems caused by non-IID data 

in the traditional FL. While [24] used this mixing to jointly learn compact local representations on each 

client and a global model across all clients, [13], [23] tried to combine a local model with the global model. 

Motivated by the development of a globally applicable model that can rapidly adjust to the client's data 

following a few gradient descent steps, Moreau envelopes were employed by pFedMe [14], whereas Per-

FedAvg [15] adopted model-agnostic meta-learning [25], an advancement in meta-learning techniques. 

To enhance FL customization, Jiang et al. [26] suggested combining FedAvg and Reptile [27].FedPer is an 

alternative customized FL method for deep neural network (DNN)training[28]. 

C. FEDERATED MULTITASK LEARNING: 

Learning distinct models that fit each local data distribution is an additional strategy for handling non-

IID data distributions at 
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clients. Accordingly, FMTL was initially presented in [16], where a systems-aware optimization 

framework called MOCHA is suggested for managing stragglers and fault tolerance in FL contexts. In 

addition, a number of other works have been written about FMTL. A framework for extended total 

variation minimization was presented by Sarcheshmehpour et al. [29], and it is helpful in FMTL networks. 

An FMTL algorithm was presented by Li et al. [30] to address the problems of robustness, accuracy, and 

fairness in FL. Shen et al. [31] used approximated variational inference to construct an FMTL method by 

treating the FL network as a star-shaped Bayesian network. An FMTL algorithm for online applications 

was the main emphasis of Li et al. [32]. Nevertheless, the convergence rate of FMTL with nonconvex 

objectives has not been examined in any of these research. Furthermore, the research has not yet examined 

the connections between the FMTL, standard FL, and tailored FL issues. 

 

II.FTML: NEW VIEW 

A. FORMULATION OF THE FMTL PROBLEM WITH LAPLACIAN REGULAZATION: 

Fitting distinct models (i.e., wk Rd, k N) to the local data of customers while accounting for the 

relationships between these models is the aim of FMTL in this study. In a mobile network, for example, 

smart-device clients are attempting to learn about their behaviours by leveraging their private and personal 

information (such as image, text, voice, and sensor data). Their data may have non-IID distributions in FL 

situations since it may originate from many contexts, applications, and surroundings. Nevertheless, these 

customers are likely to act similarly in comparable situations or with similar characteristics (e.g., location, 

time, and age). Consequently, there are typically connections between the client models [33], [34], and 

[35]. A connected graph G N, E, A is used to show the relationships between the client models. N 1,..., N 

is the set of vertices that represent FL clients, E is the set of edges that represent relationships between the 

client models, and A RN is a symmetric, weighted adjacency matrix with ak4 A k4. Ak4 presents the 

reversible relationship between customers k and 4 (ak4 a4k, k, 4). In this case, ak4 0 indicates that clients 

k and 4 have no association with each other. The intensity of the association between the models of these 

two clients is determined by the value of ak4 > 0, which also indicates that client k is a neighbour of client 

4. Let [D]kk = N ak4 and let D N be a diagonal matrix. Thus, L = 4 1 D − A is the graph's Laplacian matrix. 

Assume , 

W = [w T,..., w T] 

Let L 1:= L ⊗ and T ∈ R d N be a collective model vector. N would be a matrix of Laplacian 

regularization. We now formulate the FMTL problem as follows: 

where fk (wk ζk) is the regularized loss function corresponding to this sample and wk, and ζk is a random 

data sample taken from the client k distribution. When k < 4, the distribution of ζk and ζ4 can be different 

Please take note that we do not use any visual aids in our work to determine how similar the current client 

relationships are techniques to advance our suggested approach. Rather, we use a Laplacian regularization 

matrix L to show the current relationships between the clients' models, which we then insert into the 

Laplacian regularization term in the FMTL problem's objective function (1). Theoretically, in (1), the 

regularization hyperparameter η 0 regulates how each local model is affected by the models of nearby 

customers. Each client learns its own model each week using its own local data, independent of the server 

or other clients, if η = 0. This is known as an individual learning problem. The models of the nearby clients 

are encouraged to be near to one another if η > 0 by minimizing the Laplacian regularization term. 

Section VI of the experiment will demonstrate how the performance of our suggested algorithms is 

affected by the current relationships between the client models. 

https://www.ijfmr.com/
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k k k 

Remark 1: Other regularization techniques can be used to encourage the models of the neighbouring clients 

to be close to one another. For example, Network Lasso uses wk w4 instead of w4 2 in (3) [36], [37], [38], 

while MOCHA uses tr(W ▲W) instead of (3) [16], where W < w1,..., wN Rd×N. However, the problem 

in [39], where a number of techniques are devised for strongly convex objectives, is generalized in problem 

(1). The generalized total variation minimization problem [29], which is resolved using a primal-dual 

approach for convex objectives, is comparable to issue (1). Problem (1) has a convex variant according to 

Vanhaesebrouck et al. [40]. which an alternate direction method of multipliers (ADMM) decentralized 

algorithm solves. In (1), we use the Laplacian regularization matrix L to introduce the FTML problem. 

We are able to successfully construct FMTL algorithms utilizing SGD by leveraging the unique qualities 

of L. Crucially, our algorithms can function in the following situations: 1) with both strongly convex and 

nonconvex goal functions, and 2) in both decentralized and centralized communication methods. 

Assumption 1 (Smoothness) states that Fk is β-smooth for every k in N, meaning that for any w, wr ∈ Rd. 

∇ Fk (w) −∇ Fk (wr)  ≤ β  w − wr  . 

Assumption 2 (Strong Convexity): Fk is α-strongly convex for every k ∈ N, meaning that for every w, wr 

∈ Rd. 

α 2
F  (w) ≥ F  (wr) + ∇ F  (wr), w − wr  +    w − wr  

The third assumption (limiting variance) states that the set of ∇ 

Fk(w, ζk), k ∈ N, is made up of unbiased stochastic gradients of 

∇ Fk(w), k d∈N N, with σ 2 bounded the total variance, meaning that for each W ∈ R 

 

(1) 

 
Where, 

The Euclidean norm is Nk N k, and. The expected loss function at client k is represented by Fk( ). 

We see that the assumption of individual limited variance, which is applied to each client in FL and 

customized FL situations, is stronger than Assumption 3 [10], [14], and [15]. Additionally, (1) is somewhat 

comparable to the multitask learning problem in [41] and [42]. The latter, however, necessitates that each 

Fk (wk) be twice differential as well as evenly bounded from below and above.

https://www.ijfmr.com/
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Figure 1 shows examples of FL's undirected weighted graphs. (a) A star graph with a server for both 

customized and conventional FL. Entity graph for FMTL with and without a server (b) and (c) problem 

does not take into account the issue of non-IID data distributions among clients, and thus, it is not 

formulated for FL settings. 

 

B.NEW VIEW OF THE FMTL PROBLEM: 

First, we note that in both traditional and customized FL, every client establishes a connection with a 

server using the communication-centralized method depicted in Fig. 1(a). A star graph is used to show the 

relationships between the client and server models. A server is represented as a virtually internal vertex 0 

in this network, with a model w0 and a loss function F0 

0. All of the client models in this case are only connected to the server model w0, that is, ak0 > 0, k, but 

not to one another, that is, ak4 0, k,4 0. This work focuses on developing FMTL algorithms to solve 

problem (1), assuming that the weights ak4 are known. 

There are references to [43] and [44] regarding the discovery of ak4 in certain learning applications. In the 

following, we demonstrate that the FMTL problem (1) may be applied to both the normal FL and some 

customized FL types. We refer to LSGD-PFL [45] for a more broad optimization problem of customized

 FL. 

1) FMTL's Relation to Conventional FL: The following problem's objective function can be viewed as 

a Lagrangian function: 

 
This is comparable to the standard FL problem (FedAvg) [1]. Thus, (1) can be solved to obtain the solution 

of the typical FL problem. 

2) FMTL's Relation to Customized FL Using pFedMe's Moreau Envelopes: The following is a 

simulation of the pFedMe [14] problem: 

 

where J˜k(w) = min Fk (zk) + (η/2)||zk −w||2. We observe that 

 
Consequently, the following issue with z0 = w and F0 ≡ 0 is equal to (5): 
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This, with the star graph topology and ak0 = 1, ∀k ∈ N, is a special case of (1). 

3) Relation of FMTL to Meta-Learning-Based Personalized FL (Per-FedAvg): The problem of Per-

FedAvg [15] is given by 

 
ongoing. Set 4k = (Lk /2), k ∈ N, and wk = w−μ∇ Fk (w).11: send the server w(t).By applying [46, Lemma 

1.2.3] twice, we obtain that, for any zk ∈ Rd and for μ< mink 4k 

 

 
 

where 4k + (1/4(μ − 4kμ2) = ak0. Therefore, J(w) ≤ min F 

(z) + a z − w, since Fk (wk) ≤ min Fk (zk) + ak0 zk − w 2. 

 
 

With z0 = w and F0 = 0, (6) can now be resolved using the following epigraph problem: 

 
Therefore, with the star graph topology and ak0 = 1, ∀k ∈ N, is also a special case of (1). 

 

III.FTML ALGORITHMS 

A. FEDU CENTRALIZED ALGORITHM FOR COMMUNICATION: 

In order to solve the defined FL problem (1) under the communication-centralized scheme, we provide an 

algorithm FedU in this part. This algorithm is introduced in Algorithm 1. In this case, an entity graph is 

used to record the connections between 1Every vertex in an entity graph represents a value of an entity 

(such as a person), and if two entities are (t+1) (t) seen to be similar, then there is an edge (such as 

friendship) between them [43]. The system uses the local updates from the participating entities to update 

the global model at each communication cycle in the FedU algorithm. 

The main benefit of this method, nevertheless, is how the entity graph is used to improve the 

communication process's dependability and efficiency. The system can optimize which parties disclose 

their model updates and coordinate the aggregation process by examining the links between entities. This 

ensures that only the most pertinent information is shared, reducing needless communication cost. When 

working with large-scale and distributed systems, this graph-based method efficiently increases 

https://www.ijfmr.com/
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convergence speed and lowers the communication costs related to federated learning. The two clients 

share a specific resemblance model and are neighbors of one another. 

 

 
The server then receives the most recent local update from the sampled clients to carry out model 

regularization for each local model following the completion of the R local update stages. It should be 

noted that, unlike the star graphs of the traditional FL and customized FL, the entity graph only shows 

relationships between client models and no server models. As a result, FedU differs significantly from 

both the personalized FL algorithms . Specifically, each client k ∈ S(t) copies the server's current local 

model, which is w(t) = w(t), and changes the form locally R times throughout each communication round. 

 
where the local step size is denoted by μ. Next, the server gets updates from sampled clients k ∈ S(t) and 

{wk,R}. 

 
for any client k ∈/ S(t) that is not sampled. Lastly, for any sampled client k ∈ S(t), the server does its 

regularization update as follows. 

 
and as follows for any non sampled client k ∈/ S(t): 
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FedU's client and server side update processes are shown in Fig. 2 for two related jobs (clients) with three 

local steps (N = 2, R = 3) at round t. The client is approached by the local updates. where the global step 

size is μ = μR. This step completes the communication round.Fig. 2 illustrates the FedU method using 
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N = 2 sample clients. The two clients share a specific resemblance model and are neighbors of one another. 

Let the global solution (also known as the real optimum or true opt.) be (w1∗, w2∗). Each round's local and 

regularization updates will result in the FedU convergent solution being (w1∗, w2∗). 

B. dFedU: The server at the start of the learning process that uses a decentralized version of FedU. 

However, maintaining all of the graph's information (such as vertices and weighted edges) and storing all 

model updates on the server may not be feasible in a network with thousands of clients. This leads us to 

suggest dFedU, a decentralized FedU variant that is shown in Algorithm 

2. In particular, each client of an entity graph [as seen in Fig. 1(c)] executes R local updates and transmits 

its updated model to its nearby clients in order to carry out the model regularization during each 

communication round. In this case, none of the numerous customers in the entire network need to speak 

with one another. All that any client has to do is talk to its neighbors. 

 

IV FTML CONVERGENCE RATE 

 
The FedU and dFedU convergence rates are shown in this section. Let the best answer to (1) be W ∗ 

w1∗,..., w∗N. Lemma 1: Assume that ηρ > 2β and that Assumption 1 is true, where ρ:= L. Then, for any 

W ∈ RdN, there exists σ2 ≥ 0, such that σ2 =∇ F(0) (ηρ/(ηρ − 2β))1/2. 

(7) 

where the gradient of J with respect to wk is denoted by wk J(W). 

Therefore, in the event that each Fk is convex, then 

 
(8) 

By adjusting ηR, the requirement ηρ > 2β in Lemma 1 can always be met for any given value of ρ. As a 

result, η can manage the impact of the relationships between the client models toward w∗ and advance 

w(t) toward w∗, which ultimately results in the updated model after round t, i.e., (w(t+1), w(t+1)), 

convergence of FedU and dFedU. To meet this requirement, one can select a big η if ρ is small and vice 

versa.Keep in mind that (7) is rewritten as follows in the traditional FL setup, where wk = w, ∀k ∈ N: 

 
(9) 

which precisely matches the γ-local dissimilarity in [19] with σ2 

= 0 and the assumptions of (σ2/N,γ )-bounded gradient dissimilarity in [10] and [22]. In this scenario, σ2 

0 and γ 1 correspond to IID cases, whereas σ2 0 and γ 1 correspond to non- IID cases.Let σ2 and ρ be 

defined as in Lemma 1 from now on, and W(t) w(t),..., w(t) be the collective vector produced by FedU 

(with client sampling) or dFedU (without client sampling, i.e., S N) at round t. Keep in mind that when S 

= N, the convergence rate of FedU is simply converted to the convergence rate of dFedU. We demonstrate 

in the following theorems that FedU admits sublinear speedup of order 1/2 for nonconvex goal functions 

and linear speedup for highly convex objective functions. Convergence in Strongly Convex Cases 

(Theorem 1): Assume that η > (2β/ρ) and that Assumptions 1–3 are true. Next, 

https://www.ijfmr.com/
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where q = (128β ηρ/α) + 12(β + ηρ) + (96β2/α) + (32 pβ2/αηρ), p 

= 2(β + ηρ) + (8η2ρ2/α)+ (64β2/α)+ (12(β + ηρ)2/ηρ)+6ηρ + (48β2/ηρ), where μ1min (1/q), (2/ηρ), 

 

 
 

V.EXPERIMENTS 

In this part, we assess FedU 1exists μ ≤ (˜μ1 /R) so that, for each T ≥ (4N/ ˜μ1 αS), in both strongly convex 

and nonconvex scenarios, the data are heterogeneous and non-IID. Comparing FedU with state-of-the-art 

learning algorithms, we demonstrate the improvements of FedU with Laplacian regularization in fed-erated 

multitask   and   personalized   situations,   including 

A. EXPERIMENTAL SETTINGS: 

Using genuine datasets created in federated contexts, such as MNIST, CIFAR-10, Vehicle Sensor, and 

Human Activity Recognition, we examine classification difficulties. 

1. Human Activity Recognition: The collection of information from 30 people's cell phones' 

accelerometers and gyroscopes while they were engaged in six distinct activities, such as sitting, 

standing, walking, and lying down . 

2. Vehicle Sensor: Information is gathered from a distributed wireless sensor network of 23 sensors, such 

as infrared, seismic, and acoustic sensors (microphones and geophones) of moving automobiles. To 

anticipate two vehicle types—a dragon wagon (DW) and an assault amphibian vehicle (AAV), we 

treat each sensor as a distinct assignment. 

3. MNIST: A dataset of handwritten digits [53] with 70,000 instances and 10 labels. The entire dataset is 

dedicated to N 100 customers. Every customer has two over ten labels and varies in the extent of their 

local data. 

4. CIFAR-10: A dataset for object identification [54] that comprises 60,000 color photos in ten classes. 

We contrast our rates in IID scenarios with those of FL and customized FL algorithms for illustrative 

purposes. 

Some clients in real-world FL networks require collaborative learning with others since their data sizes are 

severely constrained. Therefore, we downsampled 80% of the data for each dataset that belonged to  Fig. 

3. Performance comparison among MOCHA, local model, global model, and FedU with the various sets 

of η in both strongly convex and nonconvex settings. (a) Human Activity. (b) Vehicle Sensor. (c) MNIST. 

to half of all clients in order to track how each algorithm behaves. In [47, Appendix F], we give all the 

information regarding datasets and findings without downsampling. 75% and 25% of each dataset are 

randomly assigned to training and testing, respectively.As the highly convex model for MNIST, Vehicle 

Sensor, and Human Activity Recognition, we employ a multinomial logistic regression (MLR) model with 

cross- entropy loss functions and an L2-regularization term. For the Human Activity and Vehicle Sensor 

datasets, we employ a straightforward DNN with a single hidden layer, a ReLU activation function, and a 

softmax layer at the network's end for nonconvex settings. The buried layer is 20 for the vehicle sensor and 

100 for human activity. For MNIST, we employ a DNN with two hidden layers, each of which has a size 

of 100. We use 

[1]'s CNN structure for CIFAR-10.Following the parameters of [16] and [24], the structural dependence 

matrix ▲ of MOCHA is selected as ▲ = (IN×N − (1/N)11T )2, where 1 is a vector of all ones size N and 

IN×N is the identity matrix with size N N. In this case, ▲ is precisely issue (1)'s Laplacian matrix L where 

every weight is ak4, k, and 4. Since FedU and dFedU perform equally in the absence of customer sampling, 

https://www.ijfmr.com/
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we exclusively assess FedU's performance in our trials. To determine which combination of 

hyperparameters enables each algorithm to attain the maximum test accuracy, we do fivefold cross 

validation when comparing FedU with other algorithms. PyTorch version 1.6 [55] is used for all 

experiments. We adhere to the implementations of [24] for MOCHA and [14] for pFedMe, FedAvg, and 

Per-FedAvg. Every experiment is conducted on an NVIDIA Tesla T4 GPU. The location of all code and 

data is https://github.com/dual-grp/FedU_FMTL. Over ten runs, the accuracy is reported with the mean 

and standard deviation. 

B) FEDU PERFORMANCE IN FMTL: 

 
We first demonstrate FedU's advantages in FMTL by contrasting it with MOCHA, the traditional local 

model, which trains one distinct model for each client, and the global model, which trains one unique 

model on centralized data. 

distinct {akl } situations and standardizing the values of {akl } within the interval [0, 1]. 

Random (R): Akl ∼ N(0, 1) is created at random for all values of akl. 

Equal (E): We can select any value of akl between 0 and 1 when all clients have the same value for akl. 

Nonetheless, FedU will be able to get the maximum accuracy with a single value of ηakl. Therefore, we 

can select a small η whenever akl is large, and vice versa. We set akl to 0.5 in this experiment and modify 

η appropriately. 

Weighted (W): We set akl 0 on the correlation between these customers because there are a number of 

them with quite little data quantities. Next, we put akl 0.5 on the relationship between clients with small 

and large data sizes, and akl. 
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Fig. 4. Effects of graph information akl on{the}convergence of FedU in both convex and 

nonconvex settings. (a) Human Activity. (b) Vehicle Sensor.(c) 

MNIST 

We first demonstrate FedU's advantages in FMTL by contrasting it with MOCHA, the traditional local 

model, which trains one distinct model for each client, and the global model, which trains It should be 

noted that MOCHA and the FMTL algorithm's performance outcomes in [29] are comparable. We compare 

FedU with others using their finest fine-tuned parameters and evaluate it on a broad range of values of η 

5.10−3, 10−3, 5.10−2, 10−2, 10−1, among others. Every client in FMTL stands for a distinct task. To 

ensure fair comparisons with local, global, and MOCHA models, all clients have the same weight 

connection with others and there is no client sampling. In Section VI-C, we also give instructions on how 

to select the various akl values. As indicated in Section III- A [16], we only provide the convex setting for 

MOCHA based on its assumption. e first demonstrate FedU's advantages in FMTL by contrasting it with 

MOCHA, the traditional local model, which trains one distinct model for each client, and the global model, 

which trains one unique model on centralized data. 

FedU performs best, followed by MOCHA, local model, and global model, according to the results in Fig. 

3. The global model performs a single job that is not adequately generalized on highly non-IID data, 

whereas the local model at each client learns only its own data without any input from the models of other 

clients. We also acknowledge that overfitting occurs in the local model when the client data size is small. 

On the other hand, FedU and MOCHA are able to to capture customer relationships and learn models for 

several related activities at once. In the case of FedU in particular, Laplacian regularization makes it 

possible to use more information about the models' structures to improve learning performance, and the 

contribution of clients with larger data sizes to those with smaller ones becomes more substantial.After 

observing various values of η, we discovered that the more η there is, the more coordination there is from 

other customers; hence, FedU operates better when η is raised.Nevertheless, the convergence of FedU is 

slowed down when η approaches a particular threshold, such as η 5.10−2 in Fig. 3. Depending on the 

dataset, η should then be carefully selected. 

C) THE IMPACT OF THE GRAPH DATA: 

We assume that all relationships between a client and its neighbors are equivalent for the purposes of the 

aforementioned tests. The connection weights must be determined beforehand, though, as they may have 

varying values in practice. Next, we assess the effect of graph data displayed in Figure 4 by simulating 

four FedU performs better with random akl than with equal akl in the majority of scenarios. FedU performs 

better when the akl values are weighted than when they are all equal. FedU performs best when compared 

to other scenarios, particularly for MNIST, when the akl values are weighted according to client similarity. 

Therefore, we can set higher values of weight connection for clients in the same geographic location than 

clients in different locations to take advantage of FedU, given the relationship between the clients' data 

distribution. For instance, in a weather forecasting application, clients in the same geographic location may 

have similar or close weather data. 
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D) COMPARISON WITH FL PERSONALIZED ALGORITHM: 

Lastly, we contrast FedU with the state-of-the-art personalized FL algorithms pFedMe and Per-FedAvg, 

as well as the traditional FL algorithms FedAvg, FedProx, SCAFFOLD, AFL, and MOCHA. Table I 

presents the findings. We compare all four genuine datasets after fixing the subset of clients S 0.1N. 

Overall, FedU nearly consistently performs at the top in every situatio 

 

VI.CONCLUSION 

Laplacian regularization has been used in this study to design an FMTL issue that captures the 

relationships between the client models. It has been demonstrated that the problem formulation may be 

applied to both classic and personalized FL. In order to solve the formulated problem with guaranteed 

convergence to the best solution, we have additionally suggested both decentralized and communication-

centralized algorithms. Our algorithms FedU and dFedU reach the state-of-the-art convergence rates, 

according to theoretical results. The suggested algorithms outperform the vanilla FedAvg in FL settings, 

the standard MOCHA in FMTL settings, and pFedMe and Per-FedAvg in customized FL settings, 

according to experimental results using real datasets in both convex and nonconvex objectives. 
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