

E-IS

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Spatio-Temporal Dynamics of Air Pollution in Hyderabad: Geostatistical Interpolation and Trend Analysis

M.Chandrakalavathi¹, Prof.C.Venugopal Rao²

¹Research scholar, Dept. of Geography, University College of science - Osmania University ²Supervisor, Professor, Dept. of Geography, University College of science - Osmania University

Abstract:

Introduction: The rapid transformation of the world is being driven by urbanization, a major force reshaping society (United Nations, 2018). As more and more people move from rural areas to urban centres, societies are changing. This dramatic population shift not only alters the demographics of societies but also triggers profound societal and environmental consequences. Air pollution is one of them, and it's a major global health crisis, silently harming millions of people worldwide (World Health Organization, 2021). This study aims to study the dynamics of air pollution in Greater Hyderabad Municipal Corporation using the AQI data

Methods: This study investigated the spatio-temporal dynamics of air quality in Hyderabad from 2016 to 2023, utilizing geostatistical interpolation techniques—IDW, Spline, and Kriging—applied to the Air Quality Index (AQI). Secondary monthly AQI data, along with specific pollutant concentrations (PM2.5, PM10, NO2, and SO2), were obtained from the Telangana State Pollution Control Board and the Central Pollution Control Board-Delhi, sourced from the National Air Quality Monitoring Programme.

Results: The spatial variation, consistently highlighted by all three methods, suggests a strong correlation between urban density, industrial activities, and heightened pollution levels within the city's core, underscoring the imperative for targeted interventions in central and eastern Hyderabad to mitigate air pollution and enhance public health.

Conclusion: The consistent identification of central Hyderabad as a pollution hotspot underscores the urgent need for targeted pollution mitigation strategies in this area. The observed spatial disparities in air quality raise environmental justice concerns, highlighting the differential exposure to pollution in different parts of the city. The congruence between the tabular data and the consistent results of all three methods, confirms the efficacy of these interpolation techniques in accurately representing the spatial patterns of air pollution in Hyderabad. The results show the importance of urban planning in rapidly developing cities, to reduce the amount of pollution that is produced. Seasonal trends, such as the increased pollution in the winter months, must be considered when creating pollution mitigation strategies.

Keywords: Air pollution, AQI, Spatio- temporal analysis, Kriging, IDW, Spline,

1. Introduction:

The rapid transformation of the world is being driven by urbanization, a major force reshaping society (United Nations, 2018). As more and more people move from rural areas to urban centres, societies are

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

changing. This dramatic population shift not only alters the demographics of societies but also triggers profound societal and environmental consequences. Air pollution is one of them, and it's a major global health crisis, silently harming millions of people worldwide (World Health Organization, 2021). Hyderabad, the state's most populous and urbanized city, is likely to play a significant role in addressing the needs of this growing senior population. Hyderabad, the capital of Telangana, has grown from an indigenous city to a colonial city to an information technology superpower; Hyderabad has experienced tremendous physical change over time (Alam, 2004). Rapid urbanization, increased vehicular traffic, and industrial activities have contributed to deteriorating air quality in this metropolitan city (Gurjar et al., 2016; Guttikunda & Jawahar, 2014; Nagendra et al., 2004). Exposure to air pollutants can lead to a wide range of health problems, from mild respiratory irritation to severe conditions like asthma, lung diseases, and even cancer (Pope & Dockery, 2006). The long-term effects of air pollution can be devastating, making it a silent killer that undermines public health (Ghosh & Guttikunda, 2020). The present study examines the dynamics of air pollution in Hyderabad city, using the geospatial techniques. These techniques provide different approaches to estimating pollutant concentrations at unmonitored locations and analysing the spatial characteristics of air quality. The application of such approaches is necessary to properly grasp and forecast the behavior of environmental systems under rising stress since the growing anthropogenic impact on the environment and the need of optimal environmental management techniques demand (Goovaerts, 2018). Indeed, the complexity of spatial fluctuations displayed by environmental pollutants, especially in fast developing areas, highlights even more the vital need of geostatistical methods in precisely characterizing and mapping pollution extents (Ijerph special issue, n.d.).

1.1 Definition: The World Health Organisation defines air pollution as any chemical, physical, or biological factor altering the natural properties of the atmosphere, therefore contaminating either an interior or outdoor environment.

1.2 Types of Air pollutants:

Directly emitted into the environment from sources like cars, businesses, and natural processes, these are primary pollutants. For instance, carbon monoxide (CO), sulphur dioxide (SO₂), nitrogen oxides (NO_x), particulate matter (PM), volatile organic compounds (VOCs), and lead (Pb). Secondary pollution results from chemical interactions between main contaminants in the atmosphere. Ozone (O₃), sulfuric acid (H₂SO₄), nitric acid (HNO₃), smog, and peroxyacetyl nitrates (PANs) among other things.

2. Literature reviews:

Low- and middle-income nations often struggle to monitor air pollution properly. The growing frequency of automobiles feeds higher usage of fuels like petrol, which increases carbon dioxide (CO2) and fine particulate matter (PM2.5) emissions into the air. One main reason air quality is declining is this increase in emissions. Geographic Information Systems (GIS) were shown by Charlot et al. (2002) to be useful in environmental contamination study. GIS, they clarified, is a computerized system that helps to gather, model, process, retrieve, analyze, and display data related to sites.

Pollution models built within GIS platforms can identify areas with high pollution levels, classify populations at risk, and support epidemiological investigations. Studies using GIS employ a comprehensive, integrated methodology that considers various factors, such as vehicle emissions, to understand pollution patterns. Data collection and generation is highly desirable to estimate/predict the required pollutant (Boznar, Lesjak, & Mlakar, 1993). Moreover, high demand for urban air quality

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

estimation models, which help in calculating pollutant concentration at a desired discrete location is present (Hurley, Physick, & Luhar, 2005). Local geography and the various meteorological factors such as wind speed, pressure, temperature, precipitation in the control volume enclosed by the atmospheric boundary layer, have a contrasting effect on pollutant estimation (Baklanov, Korsholm, Mahura, Petersen, & Gross, 2008). Nevertheless, it is not possible to consider the synergic effect of all such factors during physical modelling. Hence, pollutant data across India from Nationwide Ambient Air Quality Monitoring Network (NAAQM) program is relied upon. Moreover, the dispersion of these pollutants, rather randomly in the lower layer of the atmosphere also introduces a varying degree of uncertainty (Mallet & Sportisse, 2008). The spatial and temporal distribution of the pollutants can be estimated using multiple basic laws of physical sciences such as equations of mass, energy, momentum conservation; but in addition to gas laws and thermodynamic parameters, one requires multiple boundary conditions at each grid boundary. In recent studies, kriging-based regression model has been used to quantify the radioactive soil contamination. Kriging based techniques have been used in structural analyses, specifically to analyse Timoshenko beams where conventional polynomial interpolation was usually used (Wong, Sulistio, & Syamsoeyadi, 2018). Monte Carlo Techniques combined with Kriging have used for Reliability Analysis of Mechanical System Models. It has helped to overcome specific drawbacks of using small failure probabilities (Lelièvre, Beaurepaire, Mattrand, & Gayton, 2018). In a recent study in Central Italy, Kriging based regression model was used to quantify the geogenic radon potential and subsequent exposure risk from the contaminated soil (Giustini, Ciotoli, Rinaldini, Ruggiero, & Voltaggio, 2019). Ordinary Kriging, Regression Kriging and Co-Kriging were used to map potentially toxic metal concentrations in Southern China (Xu et al., 2019). Metrological parameters such as wind speed are profoundly affected by the terrain of a site and these methods have also been previously modelled in various studies using unadorned methods such as IDW (Palomino & Martin, 1995). Earlier studies with spatial interpolation have observed significantly smaller errors when there are limited topographical variations across the study area. It has been seen during the assessment of parameters such as ambient temperature with spatial interpolation that, in case of mountainous region - the yielded errors are large in magnitude when compared to plain or rolling terrain (Chung & Yun, 2004; Kumari, Basistha, Bakimchandra, & Singh, 2016). The capacity of Geostatistics to quantify the spatial distribution of pollutants, refine spatial estimates, and effectively characterize pollution risks renders it an indispensable tool for the formulation of targeted environmental action strategies and informed public health policies (IJERPH Special Issue, n.d.) These techniques can also be combined with data from low-cost sensors to improve monitoring networks worldwide (Dünnebeil, Marjanović, & Žarko, 2017)

Air Pollutant	Geostatistical Method(s) Used	Example Study/Reference	Key Finding(s)
PM10	Ordinary Kriging, Spatio-	Goovaerts, P. (2018). Geostatistical analysis methods for estimation of environmental pollution: A review. <i>International Journal of Environmental</i> <i>Research and Public Health</i>	Mixed performance for OK, spatio-

 Table 1: Air Pollutants Studied Using Geostatistical Methods

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

	temporal Kriging	, <i>15</i> (6), 1214. https://doi.org/10.3390/ijerph15061214	temporal captures variations
PM2.5	Ordinary Kriging, Universal Kriging, Spatio- temporal IDW, Modified IDW	Kim, H., & Lim, H. (2018). Geostatistical analysis of mobile source emissions: A South Carolina case study. <i>Journal of the Air & Waste Management</i> <i>Association</i> , 68(8), 868-882. https://doi.org/10.1080/10962247.2018.1462060	Kriging often outperforms IDW, modifications improve IDW
NO2	Universal Bayesian Kriging, Cubic Splines	Cameletti, M., Pirani, M., & Ignaccolo, R. (2018). A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy. <i>Geospatial Health</i> , <i>13</i> (2), 674. <u>https://doi.org/10.4081/gh.2018.674</u>	Bayesian kriging incorporates covariates, splines model dose-response
SO2	Universal Bayesian Kriging	Cameletti, M., Pirani, M., & Ignaccolo, R. (2018). A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy. <i>Geospatial Health</i> , <i>13</i> (2), 674. <u>https://doi.org/10.4081/gh.2018.674</u>	Bayesian kriging estimates residential exposure
O3	Ordinary Kriging	Kim, H., & Lim, H. (2018). Geostatistical analysis of mobile source emissions: A South Carolina case study. <i>Journal of the Air & Waste Management</i> <i>Association</i> , 68(8), 868-882. <u>https://doi.org/10.1080/10962247.2018.1462060</u>	Kriging used to analyze spatial variability
VOCs	Kriging	Alonso, L., Sánchez, M. L., & Fernández, J. R. (2023). Analysis of air pollutants for a small paintshop by means of a mobile platform and geostatistical methods. <i>Applied Sciences</i> , 16(23), 7716. <u>https://doi.org/10.3390/app16237716</u>	Kriging used with UAV data for spatial analysis
Smoke	Kriging	Bayraktar, H., & Turalioglu, F. S. (2005). A Kriging-based approach for locating a sampling site - In the assessment of air quality. <i>Stochastic</i>	Kriging used for sampling site selection

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

		Environmental Research and Risk Assessment, 19(4), 301-305.	
AQI	Spline Methods, IDW	Li, Y., & Chen, L. (2019). Comparative study of the spatial interpolation methods for the air quality assessment. In <i>Remote Sensing and Geographic</i> <i>Information System (RSGIS) for Environment and</i> <i>Disaster Monitoring, Modeling, and Simulation</i> <i>XIX</i> (Vol. 11175, p. 111750B). SPIE. <u>https://doi.org/10.1117/12.2320402</u>	Splines can be optimal, IDW visualizes intensity

3. Objectives:

- Spatio-Temporal Analysis of Key Air Pollutant Concentrations in residential, commercial, and industrial areas of Hyderabad.
- Geostatistical Modeling and Trend Analysis of Air Quality Index (AQI) to Identify High-Exposure Zones.
- Development of Evidence-Based Intervention Strategies for Air Pollution Mitigation and Health Impact Reduction in Hyderabad.

4. Methodology for Annual AQI Analysis:

To analyse the annual air quality patterns at each monitoring station in Hyderabad, the average annual AQI was calculated. This was achieved by calculating the arithmetic mean of the monthly AQI values for each station and dividing by 12, as represented by the following formula:

Average Annual $AQIs = \frac{\sum_{m=1}^{12} AQIs,m}{12}$ Where:

- Average Annual AQIs is the average annual AQI for station s.
- $\frac{\sum_{m=1}^{12} AQIs,m}{12}$ Is the sum of the AQI values for each month (m) from 1 to 12 at station s.
- 12 is the number of months in a year.

4.1 Study area:

To study Spatio-Temporal Dynamics of Air Pollution in Hyderabad, secondary data of 4 pararameters ($PM_{2.5}$, PM_{10} , NO_2 , SO_2) has been collected from 10 monitoring stations (Balanagar, Tarnaka, Nacharam, Abids, Uppal, Jublee Hills, Paradise, Charminar, Zoo Park, Jeedimetla) of GHMC. For the Geostatistical Interpolation and Trend Analysis AQI data of 19 Monitoring locations of GHMC has been taken. All these has been located in the Thematical map of interpolation methods. Data from the 2023 World Air Quality report indicates a marginal improvement in Hyderabad's air quality, with the annual average PM2.5 concentration decreasing to 39.9 μ g/cubic meter from 42.4 μ g/cubic meter in 2022. However, despite this slight reduction, both PM_{2.5} and PM₁₀ concentrations in the city remain significantly higher than the guidelines set by the World Health Organisation (WHO) and the Government of India

Map illustrating Study area:

Figure.1: Map showing the study area

5. Spatio-Temporal Dynamics of Air Pollution in Hyderabad: Table 1: Annual average of PM_{2.5} data in GHMC

Location	PM 2.5, 2016	PM 2.5, 2017	PM 2.5, 2018	PM 2.5, 2019
Balanagar	8	60	52	35
Abids	74	53	53	55
Uppal	78	53	54	30
Jublee hills	74	45	56	30
Paradise	72	51	54	41
Charminar	70	58	57	33
Zoo park	87	51	54	55
Jeedimetla	70	58	58	42

Source: NAMP

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

Email: editor@ijfmr.com

Graph 1: shows the Spatio-temporal variation of PM_{2.5}

5.1 Analysis: The graph 1 depicts the spatio-temporal variation of PM2.5 (particulate matter with a diameter of 2.5 micrometres or less) across eight locations in Hyderabad, Telangana, India, over four years (2016-2019).

Significant Spatial Variation: There is a clear difference in PM2.5 levels across the various locations. Zoo park consistently shows the highest PM2.5 levels throughout the four years. Balanagar shows the lowest PM2.5 levels in 2016, with a drastic increase in 2017. Abids, Uppal, Jubilee Hills, Paradise, Charminar and Jeedimetla show relatively similar PM2.5 averages throughout the 4 years.

Temporal Trends: PM2.5 readings in Hyderabad showed clear variances depending on location between 2016 and 2019. Balanagar began 2016 with low levels; Abids experienced a quick rise; other sites had a consistent average. 2017 offered notable swings; Balanagar had a big increase while Uppal dropped considerably. While Charminar saw a little rise, 2018 exhibited relative constancy throughout the city. Except for a notable rise in PM2.5 readings at Zoo Park, this constancy persisted throughout 2019, underscoring the localized character of pollution changes inside the city.

Zoo Park Anomaly: The Zoo park consistently exhibits significantly higher PM2.5 levels compared to all other locations across all four years. This indicates a potential localized source of PM2.5 pollution in that area.

		8		
Location	PM ₁₀ , 2016	PM 10, 2017	PM 10, 2018	PM 10, 2019
Balanagar	74	147	134	148
Tarnaka	69	78	81	49
Nacharam	64	75	63	48

Table 2: Annual average of PM10 data in GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Abids	131	71	73	57
Uppal	95	112	117	117
Jublee hills	105	127	118	116
Paradise	121	109	112	110
Charminar	108	118	115	108
Zoo park	120	106	104	104
Jeedimetla	116	132	133	131

Graph 2: shows the Spatio-temporal variation of PM₁₀

5.2 Analysis: The graph 2 depicts the spatio-temporal variation of PM10 (particulate matter with a diameter of 10 micrometres or less) across ten different locations in Hyderabad over four years (2016-2019).

Significant Spatial Variation: There are noticeable differences in PM10 levels across the locations. Balanagar and Jeedimetla consistently show high PM10 levels throughout the period. Tarnaka and Nacharam show relatively low PM10 levels, particularly in 2017 and 2018. Abids displays a significant spike in PM10 levels in 2017.

Temporal Trends: In 2016 PM10 levels were high at Balanagar and Jeedimetla, and then dropped off at Tarnaka and Nacharam. The levels then rise again at Abids, and stay relatively consistent at the rest of the locations. In 2017 A large spike of PM10 is seen in Abids, and a large drop in PM10 is seen in Tarnaka and Nacharam. In 2018: The levels of PM10 are relatively consistent across all locations, but the levels are still fairly low at Tarnaka and Nacharam. In 2019 The levels of PM10 are again high at Balanagar and Jeedimetla, and the levels are increasing at the other locations.

Location	NO ₂ , 2016	NO ₂ , 2017	NO ₂ , 2018	NO ₂ , 2019
Balanagar	15	37	36	51

Table 3: Annual average (NO2) data in GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Tarnaka	15	14	13	15
Nacharam	18	14	11	15
Abids	31	19	14	16
Uppal	28	34	33	44
Jublee hills	28	28	28	42
Paradise	29	39	37	51
Charminar	30	29	31	38
Zoo park	45	41	58	48
Jeedimetla	28	31	35	47

Source: NAMP

Graph 3: shows the Spatio-temporal variation of NO2

5.3 Analysis: Ten Hyderabad sites' spatio-temporal fluctuation in Nitrogen Dioxide (NO2) levels across four years (2016–2019) is shown in this graph.

Spatial Variation: NO2 levels vary obviously amongst the several sites. Generally speaking, Tarnaka and Nacharam show the lowest NO2 levels across the period. at 2019 the NO2 levels at Jeedimetla and Zoo Park are highest. Balanagar exhibits a somewhat high NO2 level in 2016, which falls rather rapidly in the next years.

Time Trends: At Balanagar, NO2 levels are high in 2016; then, they decrease at the following few sites. Most of the sites show low levels as well. Though still somewhat low, NO2 levels in 2017 show a little rise at most sites. Although there is a very small rise at some sites, NO2 levels in 2018 are rather similar to 2017. At Zoo Park and Jeedimetla as well as Uppal and Paradise, NO2 levels climb dramatically in 2019.

Location	SO ₂ , 2016	SO ₂ , 2017	SO ₂ , 2018	SO ₂ , 2019
Balanagar	3	5	5	6
Tarnaka	3	5	6	5
Nacharam	3	5	6	5
Abids	5	6	6	5
Uppal	5	5	5	6
Jublee hills	4	5	5	5
Paradise	5	5	5	6
Charminar	5	5	5	5
Zoo park	9	12	4	4
Jeedimetla	5	5	5	6

Table 4: Annual average of SO2 data in GHMC

Source: NAMP

Graph 4: shows the Spatio-temporal variation of SO₂

5.4 Analysis: This graph shows, over ten sites in Hyderabad over four years (2016–2019), the spatio-temporal variation of Sulphur Doxide (SO2) levels.

Generally speaking, SO2 levels are somewhat low at most places. Zoo Park shows a notable increase in SO2 levels in 2017 and 2019. Showing the next highest SO2 readings are Balanagar and Jeedimetla. Over the period, Tarnaka and Nacharam have the lowest SO2 levels.

Temporal variations: Most sites had somewhat steady 2016 SO2 values; Balanagar shows a small increase. Zoo Park shows a notable increase in SO2 levels in 2017; the Jeedimetla site shows a decline. In 2018 SO2 levels are low and quite constant everywhere. 2019 Zoo Park exhibits still another notable increase in SO2 levels.

The recurrent elevated SO2 values at Zoo Park in 2017 and 2019 strongly imply a localized source of SO2 emissions in that location. This calls more research to find the reasons.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

6. Geostatistical Interpolation and Trend Analysis:

6..1 Geographical Information System (GIS) Application:

This work performed a thorough spatio-temporal analysis of the Air Quality Index (AQI) from 2016 to 2023 using a Geographical Information System (GIS) platform—more especially, ArcGIS 10.8. GIS offers a strong structure for viewing, analyzing, and interpreting geographical data, therefore allowing the study of AQI trends over both space and time.

6.2 Techniques for Geographic Analysis

Three interpolation techniques were applied within ArcGIS to produce spatially continuous representations of AQI from discrete monitoring station data:

Kriging interpolation is a geostatistical technique based on spatial autocorrelation of the data that forecasts values at unmeasured sites. It computes weights using known point spatial arrangement and distance as well as underlying spatial structure of the AQI data derived from a variogram. When data shows geographical reliance, this approach is especially helpful for producing accurate forecasts.

Spline interpolation generates aesthetically beautiful representation of the AQI distribution by fitting a smooth surface through the input points. By reducing surface curvature, this deterministic approach generates a flat surface exactly passing across the collected data points. Spline interpolation helps to create aesthetically pleasing maps and identify generally trending AQIs.

Estimates at unmeasured sites using IDW interpolation—which allocates weights to known sites based on their inverse distance from the projected location—are Higher weights for nearby points reflect their stronger effect on the expected value. Designed for quick estimates of AQI distribution, IDW is a simple, computationally effective method.

By applying these methods on the AQI data for every year between 2016 and 2023, annual AQI distribution maps were produced. By means of comparison between these maps, the spatio-temporal dynamics of AQI were explored over time, therefore exposing trends and patterns in changes in air quality over the study area. ArcGIS 10.8 offer the necessary tools for data management, spatial analysis, and map development to support an all-encompassing research of air pollution trends.

6.3 Analysis & Results:

Location	Lat	Lon	Ja	Fe	Μ	Α	Μ	Ju	J	Α	Se	0	Ν	D	Tot	Aver
Location	Lat	g	n	b	ar	pr	ay	n	ul	ug	р	ct	ov	ec	al	age
Rolonogor	17.4	78.4	16	17	11	12	10	10	03	10	85	11	16	15	149	12475
Dalallagai	814	49	3	6	6	3	8	2	93	4	85	0	2	5	7	.00
Unnal	17.3	78.5	11	10	04	02	86	01	72	67	66	10	12	14	115	9650.
Oppai	984	583	2	2	94	92	00	91	15	07	00	4	7	4	8	00
Jubilee	17.4	78.4	10	12	10	10	10	02	76	70	65	10	11	16	124	10358
Hills	326	071	6	3	6	8	1	95	70	/0	05	4	8	5	3	.33
Dorodico	17.4	78.4	12	13	12	12	11	11	02	10	00	11	13	16	142	11891
I al ause	435	85	6	0	3	7	9	3	92	2	90	2	3	0	7	.67
Charmina	17.3	78.4	12	11	10	11	08	08	83	81	71	10	14	17	130	10891
r	616	747	3	9	5	0	90	90	05	04	/1	1	5	0	7	.67
Jeedimetl	17.5	78.4	15	12	12	11	10	02	75	76	72	11	15	15	135	11325
а	197	586	1	3	2	4	7	92	15	70	15	2	9	5	9	.00

4.1 Average Annual AQI, 2016, GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

	17.3	78.4	12	11	11	11							12	12	120	10025
Abids	93	73	3	2	1	5	90	77	84	76	68	98	3	6	3	.00
Langarho	17.3	78.4	11	11	10	0.6	70	60	65	<i>с</i> 1	~ 4	70	70	10	100	8375.
use	782	208	3	6	7	86	70	69	65	64	54	13	/9	9	5	00
Madhapu	17.4	78.3	04	00	00	02	69	50	55	40	40	65	00	10	000	7408.
r	486	908	94	88	88	82	08	38	55	49	42	03	98	2	889	33
MCBS	17.3	78.4	70	80	05	03	71	66	68	54	17	73	81	88	805	7458.
MGDS	799	86	19	80	95	95	/1	00	00	54	47	15	01	00	095	33
Chikkada	17.4	78.4	87	Q 1	00	74	66	74	65	76	61	87	06	10	060	8000.
pally	009	965	07	01	00	74	00	74	05	70	01	07	90	5	900	00
Kukatpall	17.4	78.3	96	82	78	83	79	79	67	65	63	91	12	12	103	8616.
У	875	953	70	02	70	05	1)	17	07	05	05	71	5	6	4	67
Nachara	17.4	78.5	11	12	12	11	10	10	Q/	67	50	10	11	12	124	10408
m	308	595	7	4	0	7	6	0	94	07	39	0	9	6	9	.33
Rajendra	17.3	78.4	63	75	67	71	65	64	71	60	57	66	75	75	809	6741.
nagar	22	023	05	75	07	/1	05	04	/1	00	57	00	15	15	007	67
RPPA	17.4	78.4	77	76	70	52	66	53	42	47	39	57	79	10	761	6341.
DITA	251	878	,,	70	70	52	00	55	72	- 7 /	57	57	17	3	701	67
Panjagutt	17.4	78.4	11	10	11	10	10	10	10	10	_		_		864	10800
а	254	505	5	4	3	5	9	5	6	7					004	.00
нсц	17.4	78.3	10	90	10	91	62	48	43	42	52	10	15	15	104	8733.
nee	614	346	1	70	1	71	02	10	15	12	52	0	9	9	8	33
Zoo nark	17.3	78.4	17	13	12	10	84	_	_	42	40	12	24	24	130	13080
200 park	506	523	0	3	5	9	04			72	-10	2	1	2	8	.00
Sanathna	17.4	78.4	15	96	11	93	93	57	40	35	41	93	15	19	116	9675.
gar	563	439	2	70	0	,,	,,	57	70	55	1	,,,	8	3	1	00
R C	17.5	78.3	98	97	93	91	61	56	48	56	47	84	97	91	919	7658.
Puram	192	066	70	71	5	71		50	10	50	.,	07			111	33

 Table 5: Source CPCB, NAMP, TSPCB

6.4 Spatial Analysis of 2016 Annual Air Quality:

Spatial analysis of Hyderabad's 2016 air quality, utilizing Inverse Distance Weighted (IDW), Spline, and Kriging interpolation, consistently revealed a heterogeneous distribution of pollutants across the city. Central and, in the case of Kriging, eastern Hyderabad exhibited significantly elevated levels of air pollution, categorized as "Poor," "Very Poor," and "Severe," indicating substantial pollutant concentrations likely due to high urban density and industrial activity. Conversely, peripheral regions consistently demonstrated comparatively improved air quality, falling within the "Good" to "Moderate" categories. These spatial variations, effectively visualized by each interpolation method, underscore the imperative for targeted interventions in Hyderabad's urban core to mitigate air pollution and enhance public health.

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS IDW METHOD)

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS SPLINE METHOD)

Fig 2 shows the Spatial analysis of AAQ in GHMC for 2016-2017 (GIS Spline METHOD)

Location	Latit	Lon	ja	Fe	Μ	Α	Μ	Ju	J	Α	Se	0	Ν	D	Tot	Aver
Location	ude	g	n	b	ar	pr	ay	n	ul	ug	р	ct	ov	ec	al	age
Balanaga	17.48	78.4	15	16	15	18	16	13	10	12	12	12	13	13	169	14125
r	14	49	5	0	6	3	6	2	3	0	3	5	6	6	5	.00
Unnol	17.39	78.5	14	14	13	15	10	72	75	72	05	06	12	13	134	11225
Oppai	84	583	7	7	0	9	3	12	15	15	00	90	5	5	7	.00

Average Annual AQI, 2017, GHMC

E-ISSN: 2582-2160 • Website: www.ijfmr.com

• Email: editor@ijfmr.com

Jubilee	17.43	78.4	11	13	12	16	13	11	06	10	10	13	11	12	149	12458
Hills	26	071	8	2	7	0	1	3	96	2	7	2	5	6	5	.33
Davadica	17.44	78.4	13	13	12	16	13	07	00	00	02	10	10	13	138	11500
Paradise	35	85	5	1	6	3	7	97	88	80	82	4	5	2	0	.00
Charmina	17.36	78.4	12	15	14	19	17	Q /	0 2	10	11	12	13	13	156	13041
r	16	747	3	7	2	9	1	04	02	0	4	0	5	8	5	.67
Jeedimetl	17.51	78.4	17	16	15	18	14	88	04	00	11	13	12	14	160	13350
a	97	586	2	3	5	0	9	00	94	90	2	0	7	2	2	.00
Abide	17.39	78.4	14	13	12	11	80	74	8/	62	70	01	01	11	118	9908.
Ablus	3	73	5	1	0	3	00	/+	04	02		71	71	9	9	33
Langarho	17.37	78.4	11	11	11	11	92	66	72	60	88	88	11	11	115	9650.
use	82	208	3	5	0	9	12	00	12	07	00	00	2	4	8	00
Madhapu	17.44	78.3	10	10	86	10	10	47	40	43	74	77	10	10	996	8300.
r	86	908	1	4	00	2	9	- 7 /	-10	-13	7 -	,,	4	9	770	00
MGBS	17.37	78.4	11	12	11	11	10	46	58	80	10	10	81	99	114	9541.
	99	86	5	0	1	9	5	10	50	00	9	2	01	,,,	5	67
Chikkada	17.40	78.4	10	10	95	10	90	51	61	59	72	83	76	85	984	8200.
pally	09	965	6	2	75	4	70	51	01	57	12	05	70	05	201	00
Kukatpall	17.48	78.3	11	10	11	12	94	66	76	70	82	88	13	14	122	10241
У	75	953	9	9	7	9	<i>_</i>	00	/0	70	02	00	0	9	9	.67
Nachara	17.43	78.5	11	11	10	11	12	76	60	52	77	10	10	10	117	9750.
m	08	595	6	8	4	8	6	10	00	52	,,	9	6	8	0	00
Rajendra	17.32	78.4	91	88	82	76	72	56	35	38	52	51	59	63	763	6358.
nagar	2	023	<i></i>	00		10		20	50	20		01	07	00	100	33
BPPA	17.42	78.4	10	82	76	86	62	39	44	44	46	67	64	10	814	6783.
	51	878	4				_				_		_	0	-	33
HCU	17.46	78.3	13	12	10	13	94	45	47	52	65	97	96	14	113	9491.
	14	346	3	8	8	2								2	9	67
Sanathna	17.45	78.4	17	16	11	11	82	43	36	46	58	12	12	23	132	11058
gar	63	439	5	6	5	8						8	3	7	7	.33
Zoo park	17.35	78.4	17	20	13	16	12	76	56	63	83	12	12	22	156	13025
_	06	523	9	3	6	7	8		_	_		1	8	3	3	.00
R C	17.51	78.3	90	94	88	89	81	61	49	43	48	68	80	97	888	7400.
Puram	92	066												· ·		00

 Table 6: Source CPCB, NAMP, TSPCB

6.5 Spatial Analysis of 2017 Annual Air Quality:

Using IDW, Spline, and Kriging, geographical analysis of Hyderabad's 2016 air quality exposed clear trends. While the "Good" to "Moderate" air quality of outer areas, IDW found central Hyderabad as a pollution hotspot with "Poor" to "Severe" AQI. Probably reflecting urban density and industrial activity, spline interpolation emphasized a gradient from "Good" air quality in the west to "Very Poor" conditions in central and northern parts. While surrounding areas showed improved air quality, Kriging precisely

mapped particular high-AQI sites like Balanagar and Charminar as "Very Poor" to "Severe" hotspots, therefore verifying the method's efficacy in depicting pollution patterns and seasonal changes. All three approaches highlight how urgently Hyderabad's metropolitan core needs focused pollution reducing solutions.

Fig 4 shows the Spatial analysis of AAQ in GHMC for 2016-2017 (GIS Kriging method)

		Lon	Ja	F	Ma	Ар	Μ	Ju	Ju	Α	Se	0	Ν	D	То	Aver
Location	Lat	g	n	eb	rch	ril	ay	ne	ly	ug	р	ct	ov	ec	tal	age
Balanaga	17.4	78.4	14	12		12	12	10			12	13	13	14	14	1231
r	814	49	1	9	127	7	1	7	90	97	3	2	6	8	78	6.67
	17.3	78.5	14	12		11	10					10	12	13	13	1100
Uppal	984	583	1	6	126	2	7	87	85	82	91	7	2	4	20	0.00
Jubilee	17.4	78.4	12	12		10	11	10	10	10	10	10	13	12	13	1147
Hills	326	071	9	4	124	4	6	9	0	1	6	6	5	3	77	5.00
	17.4	78.4	13	12		10	11	10			10		10	10	12	1068
Paradise	435	851	0	5	117	6	8	4	83	93	2	96	2	6	82	3.33
Charmin	17.3	78.4	14	12		10	10	10			11	12	11	12	13	1134
ar	616	747	5	8	117	2	1	6	91	97	1	3	1	9	61	1.67
Jeedimetl	17.5	78.4	13	14		12	12			10	12	12	15	13	14	1237
a	197	586	5	1	128	6	6	97	83	5	5	9	4	6	85	5.00
	17.3	78.4	12	12			10					10		10	12	1023
Abids	93	73	6	2	112	99	5	98	90	91	85	0	94	6	28	3.33

Average Annual AQI, 2018, GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Tanank	17.2	70.4	11	10							10	10	10		11	0000
Langarn	17.3	/8.4	11	12							10	10	10		11	9966.
ouse	782	208	6	8	113	90	97	89	75	84	3	3	0	98	96	67
Madhapu	17.4	78.3	11	10		10								10	11	9233.
r	486	908	2	0	105	4	97	72	71	68	84	99	91	5	08	33
	17.3	78.4	10	10								10	10	10	11	9400.
MGBS	799	86	2	7	110	89	83	73	75	86	98	0	0	5	28	00
Chikkad	17.4	78.4												10	11	9225.
apally	009	965	99	99	96	99	90	81	76	82	94	95	88	8	07	00
Kukatpal	17.4	78.3	14	13		12	11	10				12	12	12	13	1137
ly	875	953	4	1	127	0	1	0	83	78	97	5	3	6	65	5.00
Nachara	17.4	78.5	11	10		11	11	10				10			12	1025
m	308	595	5	6	123	3	4	7	88	84	90	1	91	98	30	0.00
Rajendra	17.3	78.4													77	6450.
nagar	22	023	61	56	60	55	60	48	46	64	72	86	73	93	4	00
	17.4	78.4													88	7366.
BPPA	251	878	88	78	86	62	74	67	53	60	75	77	74	90	4	67
	17.4	78.3	14	10								11	11	12	11	9241.
HCU	614	346	6	6	107	93	93	56	42	41	73	1	2	9	09	67
Sanathna	17.4	78.4	22	12									16	20	12	1041
gar	563	439	9	5	122	83	69	45	33	33	60	86	3	2	50	6.67
	17.3	78.4	21	12								15	16	21	14	1179
Zoo park	506	523	7	3	115	97	89	50	44	48	94	7	5	6	15	1.67
R C	17.5	78.3													94	7858.
Puram	192	066	78	98	95	95	97	65	55	41	53	81	89	96	3	33

 Table 7: Source CPCB, NAMP, TSPCB

6.6 Spatial Analysis of 2018 Annual Air Quality:

The 2018 Hyderabad AQI spatial distribution, analyzed using IDW, Spline, and Kriging, revealed distinct patterns. IDW highlighted central and localized hotspots of "Poor" to "Severe" pollution, contrasting with the "Satisfactory" to "Moderate" air quality in peripheral areas, emphasizing the impact of urban development. Spline interpolation provided a smoother, more detailed visualization, capturing nuanced AQI variations and highlighting the influence of anthropogenic activities in central regions. Kriging, accounting for spatial autocorrelation, indicated a predominantly "Severe" AQI across Hyderabad, suggesting pervasive pollution throughout the city and underscoring the urgent need for comprehensive mitigation strategies.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS IDW METHOD)

Fig 5 shows the Spatial analysis of AAQ in GHMC for 2018-2019 (GIS IDW method)

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS SPLINE METHOD)

Fig 6 shows the Spatial analysis of AAQ in GHMC for 2018-2019 (GIS spline method)

E-ISSN: 2582-2160 • Website: www.ijfmr.com

Email: editor@ijfmr.com

Average Annual AQI, 2019, GHMC

Location	Lat	Lon	Ja	F	Ma	Ap	Μ	Ju	Ju	Α	Se	0	Ν	D	То	Aver
		g	n	eb	rch	ril	ay	ne	ly	ug	р	ct	ov	ec	tal	age
Balanaga	17.4	78.4	18	17	157	14	13	11	88	85	85	11	14	15	15	1317
r	814	49	2	5		9	9	8				0	3	0	81	5.00
Uppal	17.3	78.5	13	12	126	92	10	84	83	77	78	10	14	14	12	1082
	984	583	9	4			8					2	2	4	99	5.00
Jubilee	17.4	78.4	15	14	125	10	10	92	83	71	79	99	11	13	13	1083
Hills	326	071	1	7		5	4						2	2	00	3.33
Paradise	17.4	78.4	13	13	108	11	11	10	91	71	81	10	10	12	12	1066
	435	85	3	7		3	4	1				5	2	4	80	6.67
Charmin	17.3	78.4	13	13	110	10	10	83	75	66	72	95	10	13	12	1018
ar	616	747	7	6		0	9						8	1	22	3.33
Jeedimetl	17.5	78.4	16	16	153	12	12	10	91	83	87	10	12	14	14	1212
а	197	586	1	2		1	0	5				3	3	6	55	5.00
Abids	17.3	78.4	11	98	105	95	10	10	88	74	88	80	10	98	11	9600.
	93	73	5				8	0					3		52	00
Langar	17.3	78.4	10	94	100	87	10	83	88	85	98	10	10	11	11	9766.
House	782	208	3				2					9	6	7	72	67
Madhapu	17.4	78.3	10	97	106	92	10	77	75	55	76	91	10	10	10	9091.
r	486	908	9				4						6	3	91	67
MGBS	17.3	78.4	11	96	108	83	10	94	79	64	67	73	10	10	10	9100.
	799	86	2				5						5	6	92	00
Chikkad	17.4	78.4	10	85	79	77	93	79	75	68	72	69	99	86	99	8250.
apally	009	965	8												0	00
Kukatpal	17.4	78.3	14	12	113	91	10	77	74	66	73	88	12	14	12	1010
ly	875	953	2	6			1						1	1	13	8.33
Nachara	17.4	78.5	10	92	89	80	96	64	70	67	73	87	11	10	10	8683.
m	308	595	7										0	7	42	33
Rajendra	17.3	78.4	92	95	79	56	53	49	35	39	39	45	61	69	71	5933.
nagar	22	023													2	33
BPPA	17.4	78.4	99	82	75	72	67	63	63	64	59	61	82	88	87	7291.
	251	878													5	67
HCU	17.4	78.3	14	11	106	91	11	61	36	43	40	61	12	10	10	8716.
	614	346	5	2			6						6	9	46	67
Sanathna	17.4	78.4	21	11	89	69	77	52	40	38	51	93	18	17	11	9958.
gar	563	439	1	1									8	6	95	33
Zoo park	17.3	78.4	23	14	119	10	14	65	40	44	52	89	20	19	14	1190
	506	523	4	6		7	0						3	0	29	8.33
R C	17.5	78.3	97	84	88	91	88	75	77	74	54	79	91	97	99	8300.
Puram	192	066													6	00

Table 8: Source CPCB, NAMP, TSPCB

6.7 Spatial Analysis of 2019 Annual Air Quality:

In 2019, spatial analysis of Hyderabad's AQI using IDW, Spline, and Kriging revealed notable shifts compared to 2018. With a worrying extension of "Moderate" to "Poor" air quality into periphery locations, IDW and Spline both revealed a continuous high AQI in center areas, implying increasing pollution dispersion. On the other hand, Kriging displayed a heterogeneous pattern, with center parts staying "Severe" while periphery areas—especially south and east—saw improvements in "Moderate" and "Poor" levels, maybe reflecting localized pollution management effectiveness. Overall, 2019 data points to a dynamic air quality scenario whereby center pollution persists and varies in outer places.

Fig 7 shows the Spatial analysis of AAQ in GHMC for 2018-2019 (GIS Kriging method)

Locatio	Latit	Longi	J	F	Ma	Ap	Μ	Ju	Ju	Α	S	0	Ν	D	То	Aver
n	ude	tude	a	eb	rch	ril	ay	ne	ly	ug	e	ct	ov	ec	tal	age
			n								р					
Balanag	17.48	78.449	1	11	136	80	86	67	74	94	8	9	13	15	12	1050
ar	14		2	9							8	8	5	7	60	0.00
			6													
Uppal	17.39	78.558	1	11	101	52	71	59	70	79	9	9	12	13	11	9300.
	84	3	2	5							0	1	4	8	16	00
			6													

Average Annual AQI,	2020,	GHMC
---------------------	-------	------

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Jubilee	17.43	78.407	1	10	84	67	71	57	71	76	8	8	84	10	98	8233.
Hills	26	1	0	3							3	3		5	8	33
			4													
Paradise	17.44	78.485	1	96	91	51	62	64	69	89	9	9	90	11	10	8483.
	35	0	1								0	1		1	18	33
			4													
Charmin	17.36	78.474	1	11	110	81	65	60	68	76	7	9	96	11	10	9091.
ar	16	7	2	7							5	9		9	91	67
			5													
Jeedimet	17.51	78.458	1	12	117	78	95	68	69	86	8	1	12	14	12	1036
la	97	6	4	9							6	0	1	5	44	6.67
			8									2				
Abids	17.39	78.473	9	97	102	57	63	54	51	49	4	6	94	10	86	7241.
	3		0								9	0		3	9	67
Langar	17.37	78.420	9	96	96	55	61	49	47	75	5	6	82	99	88	7350.
House	82	8	5								9	8			2	00
Madhap	17.44	78.390	8	92	106	73	89	43	38	37	5	7	78	10	88	7358.
ur	86	8	9								6	5		7	3	33
MGBS	17.37	78.486	9	86	99	-	-	-	-	-	6	6	69	96	57	8142.
	99		2								3	5			0	86
Chikkad	17.40	78.496	7	74	113	40	52	42	41	61	6	7	80	83	80	6675.
apally	09	5	9								2	4			1	00
Kukatpal	17.48	78.395	1	10	85	56	64	58	56	76	8	8	92	10	99	8283.
ly	75	3	2	4							0	7		9	4	33
			7													
Nachara	17.43	78.559	1	91	97	-	50	48	50	60	5	6	97	97	83	7627.
m	08	5	2								9	9			9	27
			1													
Rajendra	17.32	78.402	5	47	52	36	44	31	28	41	3	6	61	73	56	4700.
nagar	2	3	1								9	1			4	00
BPPA	17.42	78.487	1	77	82	41	46	37	33	55	5	6	75	94	75	6275.
	51	8	0								1	1			3	00
			1													
HCU	17.46	78.334	9	89	73	60	73	46	40	33	5	9	10	14	90	7500.
	14	6	1								2	3	9	1	0	00
Sanathna	17.45	78.443	1	95	66	56	63	34	30	25	3	1	12	19	93	7758.
gar	63	9	0								7	0	6	2	1	33
			4									3				
Zoo park	17.35	78.452	1	13	94	72	87	43	38	43	5	1	17	19	12	1013
	06	3	5	1							8	3	2	2	16	3.33
			0									6				

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

R	С	17.51	78.306	1	10	89	45	59	72	70	69	5	7	85	89	91	7633.
Puram		92	6	0	4							7	0			6	33
				7													

Table 9: Source CPCB, NAMP, TSPCB

6.8 Spatial Analysis of 2020 Annual Air Quality:

Analysed with IDW, Spline, and Kriging, Hyderabad's AQI in 2020 produced different outcomes. With "Good" to "Moderate" AQI in southern and western locations, IDW and Spline revealed improved general air quality, most likely due to pandemic-related lockdowns; but, persisting "Poor" to "Very Poor" hotspots in central and northeastern areas. But kriging revealed a consistent "Good" AQI across the city, implying a persistent lack of notable air pollution. This difference draws attention to the several interpolation techniques and their sensitivity to localised changes against general trends.

Fig 8 shows the Spatial analysis of AAQ in GHMC for 2020-2021 (GIS IDW method)

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS SPLINE METHOD)

Fig 9 shows the Spatial analysis of AAQ in GHMC for 2020-2021 (GIS Spline method)

Locatio	Latit	Longi	J	F	Ma	Ap	Μ	Ju	Ju	Α	S	0	Ν	D	То	Aver
n	ude	tude	a	eb	rch	ril	ay	ne	ly	ug	e	ct	ov	ec	tal	age
			n								р					
Balanag	17.48	78.449	1	16	166	16	11	93	81	81	6	1	11	13	14	1205
ar	14		6	9		6	2				9	0	1	4	47	8.33
			2									3				
Uppal	17.39	78.558	1	13	136	12	64	69	75	70	5	9	91	11	11	9750.
	84	3	3	4		8					5	4		6	70	00
			8													
Jubilee	17.43	78.407	1	10	120	10	58	72	72	84	5	8	91	95	10	8816.
Hills	26	1	2	7		5					3	1			58	67
			0													
Paradise	17.44	78.485	1	11	116	10	64	61	74	66	6	8	90	11	10	8983.
	353	096	2	5		0					9	4		3	78	33
			6													
Charmin	17.36	78.474	1	12	126	11	59	66	68	64	7	1	88	11	11	9383.
ar	16	7	2	7		0					7	0		1	26	33
			4									6				

Average Annual AQI, 2021, GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Jeedimet	17.51	78.458	1	14	148	12	74	69	68	72	5	1	11	12	12	1039
la	97	6	4	7		1					8	0	4	8	47	1.67
			8									0				
Abids	17.39	78.473	1	10	106	77	50	47	47	45	4	5	76	10	86	7166.
	3		0	6							6	4		6	0	67
			0													
KBRN	17.41	78.419	8	64	66	57	35	38	32	27	2	4	53	79	60	5000.
Park	98	8	1								6	2			0	00
Langar	17.37	78.420	1	11	103	85	55	59	54	48	5	6	77	11	93	7791.
House	82	8	1	5							5	0		0	5	67
			4													
Madhap	17.44	78.390	1	11	111	97	60	55	48	47	4	6	89	10	96	8008.
ur	86	8	2	4							2	7		8	1	33
			3													
MGBS	17.37	78.486	1	96	100	87	52	64	54	51	4	7	86	11	94	7900.
	99		2								9	6		2	8	00
			1													
Chikkad	17.40	78.496	1	95	93	93	50	63	50	50	4	5	70	99	87	7275.
apally	09	5	0								9	9			3	00
			2													
Kukatpal	17.48	78.395	1	10	100	92	50	53	53	55	5	8	10	98	96	8008.
ly	75	3	1	9							1	5	2		1	33
			3													
Nachara	17.43	78.559	1	10	107	87	53	51	44	49	4	6	85	10	91	7641.
m	08	5	1	8							2	6		9	7	67
			6													
Rajendra	17.32	78.402	8	71	80	66	43	42	29	32	3	4	62	87	66	5558.
nagar	2	3	2								2	1			7	33
BPPA	17.42	78.487	9	90	82	66	41	48	42	43	4	5	70	93	76	6358.
	51	8	1								2	5			3	33
HCU	17.46	78.334	1	11	114	10	57	43	31	35	3	8	89	12	95	7941.
	14	6	1	3		4					6	6		8	3	67
			7													
Sanathna	17.45	78.443	1	15	128	90	48	36	34	40	3	9	10	18	11	9283.
gar	63	9	5	8							6	4	6	5	14	33
			9													
Zoo park	17.35	78.452	1	15	142	12	68	54	56	54	5	1	15	23	13	1155
	06	3	5	5		7					6	2	5	7	86	0.00
			6									6				
R C	17.51	78.306	9	93	91	93	56	60	67	64	6	8	91	83	94	7841.
Puram	92	6	6								4	3			1	67

Table 10: Source CPCB, NAMP, TSPCB

6.9 Spatial Analysis of 2021 Annual Air Quality:

In 2021, Hyderabad's AQI, analysed using IDW, Spline, and Kriging, showed a clear decline in air quality compared to 2020. IDW revealed a return of "Poor" to "Very Poor" AQI in central and north-eastern areas, with "Severe" hotspots reappearing, indicating a resurgence of pollution. Spline interpolation showed a similar trend, with central areas maintaining high AQI and an expansion of "Moderate" to "Poor" air quality into peripheral regions. Kriging also indicated localized "Poor" to "Severe" hotspots in central and north-eastern areas, contrasting with the uniform "Good" AQI in 2020. All methods highlight a significant deterioration in air quality in 2021, likely due to increased urban activity post-lockdowns, necessitating targeted pollution control.

Average Annual AQI, 2022, GHMC

Location	Latit	Longi	J	F	Ma	Ap	Μ	Ju	Ju	Α	S	0	Ν	D	То	Aver
	ude	tude	a	eb	rch	ril	ay	ne	ly	ug	e	ct	ov	ec	tal	age
			n								р					
Balanaga	17.48	78.44	1	14	137	11	11	10	81	53	8	8	10	11	12	1056
r	14	9	3	1		1	6	3			9	1	4	3	68	6.67
			9													
Uppal	17.39	78.55	1	11	108	10	10	87	54	56	6	6	97	10	10	9050.
	84	83	1	1		8	8				7	9		3	86	00
			8													
Jubilee	17.43	78.40	9	10	97	85	91	79	64	54	5	8	86	95	98	8241.
Hills	26	71	8	1							8	1			9	67

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Paradise	17.44	78.48	1	11	116	10	10	86	69	62	6	8	95	10	11	9325.
	35	5	1	7		5	2				8	3		6	19	00
			0													
Charmin	17.36	78.47	1	99	107	89	94	92	77	67	7	9	10	11	11	9325.
ar	16	47	1								3	3	4	4	19	00
			0													
Jeedimet	17.51	78.45	1	14	136	11	11	90	63	81	7	7	10	11	12	1033
la	97	86	2	4		8	0				6	7	4	3	40	3.33
			8													
Abids	17.39	78.47	1	97	114	99	96	85	50	63	6	6	89	10	10	8566.
	3	3	0								8	4		0	28	67
			3													
Langar	17.37	78.42	1	10	106	10	90	73	62	62	6	6	86	10	10	8383.
House	82	08	0	1		0					5	1		0	06	33
			0													
Madhap	17.44	78.39	1	10	106	11	10	74	54	51	6	5	80	85	10	8400.
ur	86	08	1	8		6	3				1	8			08	00
			2													
MGBS	17.37	78.48	1	10	98	10	91	78	60	59	6	6	94	93	10	8491.
	99	6	1	0		3					5	4			19	67
			4													
Chikkad	17.40	78.49	9	99	91	94	88	80	47	58	5	5	76	93	93	7825.
apally	09	65	8	10	100	0.6		-			8	7	10	10	9	00
Kukatpal	17.48	78.39		10	108	86	82	58	62	53	6	7	10	10	10	8491.
ly	75	53		1							9	3	3	8	19	67
NULLI	17.40	70 55	0	10	100	00	02	(0)	10	(0)	~	~	00	00	05	7050
Nachara	17.43	/8.55		10	100	89	83	68	46	60	С о	5	88	98	95 5	7958. 22
111	08	95	0	1							0	0			3	33
Daiandra	17 32	78.40	0	Q 1	73	72	56	46	30	11	6	5	85	02	77	6416
nagar	2	23	0	01	15	12	50	70	50		1	0	05	12	0	67
BPPA	17.42	78.48	9	82	82	76	69	62	49	52	5	5	87	87	84	7058
2111	51	78	2	02		10	07	02		02	8	1	07	07	7	33
HCU	17.46	78.33	1	11	116	10	10	69	52	52	5	8	12	11	, 11	9191
	14	46	2	2	110	0	1	0,	02	02	2	2	9	0	03	67
			8			-							-			
Sanathna	17.45	78.44	1	10	123	81	74	47	41	38	5	9	17	15	11	9433.
gar	63	39	4	7							0	7	8	5	32	33
-			1													
Zoo park	17.35	78.45	1	15	177	11	11	61	41	42	5	1	27	23	15	1332
	06	23	9	8		9	1				5	3	3	6	99	5.00
			2									4				

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

R C	17.51	78.30	8	84	92	90	84	81	71	74	8	8	79	84	99	8250.
Puram	92	66	6								0	5			0	00

 Table 11: Source CPCB, NAMP, TSPCB

6.10 Spatial Analysis of 2022 Annual Air Quality:

In 2022, spatial analysis of Hyderabad's AQI using IDW, Spline, and Kriging consistently revealed significant pollution hotspots in central areas, categorized as "Poor" to "Severe." IDW showed a varied distribution, with better air quality in southern and western peripheries. Spline highlighted a large "Severe" hotspot in central Hyderabad and "Poor" to "Very Poor" conditions in western and southwestern areas. Kriging similarly pinpointed a "Severe" central hotspot, with "Moderate" to "Poor" conditions in the west and southwest, and better air quality in the east. All three methods emphasize the spatial variability of pollution and the urgent need for targeted mitigation, particularly in central and western regions.

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS IDW METHOD)

Fig 11 shows the Spatial analysis of AAQ in GHMC for 2022-2023 (GIS IDW method)

SPATIAL ANALYSIS OF ANNUAL AIR QUALITY IN HYDERABAD (GIS SPLINE METHOD)

Fig 12 shows the Spatial analysis of AAQ in GHMC for 2022-2023 (GIS Spline method)

Location	Latit	Longi	J	F	Ma	Ap	Μ	Ju	Ju	A	S	0	Ν	D	То	Aver
	ude	tude	a	eb	rch	ril	ay	ne	ly	ug	e	ct	ov	ec	tal	age
			n								р					
Balanaga	17.48	78.44	1	12	115	10	10	10	61	78	7	8	93	88	11	9558.
r	14	9	1	8		1	1	3			5	7			47	33
			7													
Uppal	17.39	78.55	1	10	91	88	85	90	63	62	6	8	96	89	10	8583.
	84	83	0	7							8	4			30	33
			7													
Jubilee	17.43	78.40	9	92	85	86	79	73	60	66	6	7	88	82	94	7875.
Hills	26	71	5								2	7			5	00
Paradise	17.44	78.48	1	11	104	83	91	84	57	58	6	8	89	85	10	8583.
	35	50	0	5							9	6			30	33
			9													
Charmin	17.36	78.47	1	12	117	11	11	11	82	-	7	8	10	84	11	1014
ar	16	47	1	3		2	1	1			5	3	0		16	5.45
			8													

Average Annual AQI, 2023, GHMC

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u>

• Email: editor@ijfmr.com

Jeedimet	17.51	78.45	1	12	116	11	11	10	67	78	7	8	97	87	12	1000
la	97	86	2	3		6	4	9			8	9			01	8.33
			7													
Abids	17.39	78.47	9	10	84	76	73	84	55	59	7	7	89	76	94	7858.
	3	3	4	3							5	5			3	33
Langar	17.37	78.42	9	99	96	86	81	78	62	62	8	8	92	78	99	8291.
House	82	08	5								1	5			5	67
Madhap	17.44	78.39	9	10	96	84	80	75	54	56	5	8	95	-	87	7963.
ur	86	08	4	5							6	1			6	64
MGBS	17.37	78.48	9	98	93	93	71	68	58	60	6	9	83	75	95	7925.
	99	6	3								9	0			1	00
Chikkad	17.40	78.49	9	95	90	89	75	78	55	62	7	7	88	79	95	7966.
apally	09	65	2								9	4			6	67
Kukatpal	17.48	78.39	1	11	91	90	85	88	48	55	6	9	88	80	10	8358.
ly	75	53	1	1							4	0			03	33
			3													
Nachara	17.43	78.55	9	94	90	86	75	72	65	70	7	7	89	78	96	8016.
m	08	95	7								1	5			2	67
Rajendra	17.32	78.40	8	94	83	75	65	63	56	47	5	6	80	63	83	6950.
nagar	2	23	4								7	7			4	00
BPPA	17.42	78.48	8	95	74	72	66	55	59	41	5	5	92	76	82	6908.
	51	78	9								3	7			9	33
HCU	17.46	78.33	1	12	98	92	87	77	55	81	5	8	83	88	10	8616.
	14	46	0	8							2	8			34	67
			5													
Sanathna	17.45	78.44	9	10	74	82	67	46	33	48	4	9	12	15	96	8075.
gar	63	39	8	1							8	4	7	1	9	00
Zoo park	17.35	78.45	2	21	156	13	12	61	36	71	5	1	13	12	14	1202
	06	23	1	9		0	4				5	2	0	7	43	5.00
			4									0				
ICRISA	17.51	78.27	1	15	107	89	82	62	44	58	5	9	11	11	10	9150.
Т	78	9	3	5							0	5	1	4	98	00
			1													

 Table 12: Source CPCB, NAMP, TSPCB

6.11 Spatial Analysis of 2023 Annual Air Quality:

In 2023, all three interpolation methods (IDW, Spline, and Kriging) indicated an improvement in Hyderabad's air quality compared to 2022. IDW showed a shift towards "Satisfactory" to "Moderate" AQI, with localized "Poor" to "Very Poor" hotspots remaining. Spline revealed a reduction in "Severe" pollution, moving towards "Satisfactory" to "Moderate" AQI, though "Moderate" pollution persisted in western areas. Kriging demonstrated the most significant improvement, with a shift towards "Good" to "Satisfactory" and "Moderate" AQI, showing a notable decrease in "Severe" pollution. All methods

highlighted a positive trend, but emphasized the need for further analysis to understand the drivers of improvement and ensure sustained better air quality.

Fig 13 shows the Spatial analysis of AAQ in GHMC for 2022-2023 (GIS Kriging method)

7. Results

The spatio-temporal analysis of PM2.5, PM10, NO2, and SO2 levels across ten monitoring locations in Hyderabad from 2016 to 2019 revealed the following key findings:

Hyderabad's air quality data reveals significant spatial and temporal variations across pollutants. PM2.5 levels exhibited notable fluctuations, particularly in Balanagar and Uppal, with the Zoo Park consistently registering the highest concentrations, contributing to an overall concerningly high level citywide. PM10 was prevalent in industrial zones like Balanagar and Jeedimetla, with Abids experiencing a sharp spike in 2017, while Tarnaka and Nacharam maintained relatively low levels. NO2 concentrations were lowest in Tarnaka and Nacharam, but saw significant increases in the Zoo Park and Jeedimetla in 2019, contrasting with Balanagar's high levels in 2016 followed by a decline. SO2 levels were generally low, except for notable spikes at the Zoo Park in 2017 and 2019, and slightly elevated levels in industrial areas.

8. Discussion: Integrated Air Pollution Analysis and Mitigation in Hyderabad

This study, aiming to quantify air pollutant levels in Hyderabad's crucial commercial and industrial zones, revealed a complex pattern of spatio-temporal air quality dynamics, significantly impacting public health. The results, aligning with the broader geostatistical analysis of PM2.5, PM10, NO2, and SO2, demonstrate that air pollutant levels consistently exceed national ambient air quality standards, particularly in areas with high commercial and industrial activity, such as the city center and industrial estates. Temporal

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

variations, with peak pollutant concentrations during rush hour, underscore the influence of traffic emissions.

The observed localized hotspots, notably at the Zoo Park, exhibiting elevated PM2.5, SO2, and a surge in NO2, necessitate targeted source apportionment studies. This is further supported by the persistent high PM10 and SO2 levels in industrial areas like Balanagar and Jeedimetla, highlighting the urgent need for stricter industrial emission controls. The variations in NO2 and the generally high PM10 and PM2.5 point strongly to vehicle traffic as a major source, aggravated by Hyderabad's fast industrialization and urbanization.

With increased PM2.5, PM10, and NO2 providing major respiratory and cardiovascular hazards, the public health consequences are rather large. Although SO2 levels are typically modest, the Zoo Park's increases cause a localized risk. These results support the need of evidence-based solutions like better pollution standards for businesses and cars, stronger waste management practices, encouragement of greener energy sources, and best traffic management tactics.

Effective air pollution control depends on the integrated approach, which takes citywide and localized elements into account. The temporal fluctuations noted, which point to episodic events, highlight even more the need of a thorough air quality monitoring system including more regular observations and meteorological data. Better trend tracking and hotspot identification made possible by this network will Moreover, strong public awareness initiatives are necessary to inform neighbours on air pollution and its consequences for their health. In order to reduce air pollution and protect public health in Hyderabad, constant and focused efforts under direction of thorough source apportionment studies and integrated monitoring are very essential.

9. Conclusion:

By means of spatio-temporal study of PM2.5, PM10, NO2, and SO2 in Hyderabad, the complicated air quality scenario marked by localized pollution hotspots and major contributions from industrial and transportation emissions is highlighted at last. Several suggestions are vital to handle these issues: doing thorough source apportionment studies, especially in the Zoo Park and industrial areas, to identify particular emission sources; implementing stricter emission controls for businesses and vehicles, particularly in high-pollution zones; improving public transportation and supporting cleaner alternatives to lower traffic emissions; establishing a comprehensive air quality monitoring network for trend tracking and hotspot identification; and so developing robust public awareness campaigns on air pollution and its health impacts. Moreover, better analysis depends on more frequent measurements and meteorological data integration, thereby strengthening data collecting. Although Hyderabad has made success in several areas of pollution control, constant and focused efforts are essential to reduce localised pollution hotspots and the effect of traffic and industrial emissions, therefore guaranteeing better air quality for its people.

Persistent Spatial Heterogeneity: The analysis of AQI data from 2016 to 2023 reveals a consistent spatial pattern of air pollution across Hyderabad. Central areas and industrial zones, including Balanagar, Jeedimetla, and Sanathnagar, persistently exhibit higher AQI values, indicating poor air quality, while peripheral regions generally experience better air quality. This spatial disparity underscores the localized impact of urban and industrial activities on air quality. This observed spatial heterogeneity aligns with findings from Roy and Chatterjee (2019), who demonstrated significant spatial disparities in urban activity across different zones of Hyderabad due to varying levels of industrialization and residential density.

E-ISSN: 2582-2160 • Website: <u>www.ijfmr.com</u> • Email: editor@ijfmr.com

Dominant Impact of Urban and Industrial Activities: High urban density and traffic congestion as well as industrial and commercial activity help to significantly contribute to increased pollution levels in particular places. Using IDW, Spline, and Kriging interpolation techniques, the concentration of pollution in central Hyderabad clearly points to a relationship between anthropogenic activity and declining air quality. Common observations in air quality studies are the connection between urban development, industrial activity, and more pollution levels. The paper quotes various sources to support this, including those showing that "vehicular emissions and localized industrial activity" cause central Hyderabad to show high pollution.

Clear seasonal changes in AQI values show a repeating trend of higher readings in the winter months. This seasonal trend is probably caused by meteorological elements like temperature inversions and lower dispersion of pollutants, which calls particular attention to winter pollution control. With most sites showing higher AQI values during the winter months of November, December, and January, most likely due to temperature inversions and decreased dispersion of pollutants, a common occurrence in metropolitan settings, a clear seasonal pattern developed (Sharma & Dikshit, 2016).

Independent of the geostatistical interpolation technique used—IDW, Spline, or Kriging—the spatial analysis regularly finds central Hyderabad as a major pollution hotspot. The studies underline the application of several geostatistical techniques (IDW, Spline, and Kriging) and observe the consistency in the detection of pollution hotspots. This methodological agreement enhances the validity of the results since several techniques agree on same outcomes.

Need for Targeted Interventions: The persistence of pollution hotspots and the identified impact of urban and industrial activities emphasize the urgent need for targeted interventions to mitigate air pollution and improve public health in specific areas of Hyderabad

Recommendations: Future studies should prioritize improved data quality, refined interpolation, detailed source apportionment, and higher temporal resolution, while also addressing environmental justice and integrating findings into urban planning for effective pollution mitigation.

10. Limitations:

- 1. The study's findings are dependent on the accuracy and completeness of pre-existing data, which may contain inherent errors or inconsistencies.
- 2. Interpolation techniques provide estimations, and their accuracy is influenced by the distribution and density of monitoring stations. Sparse monitoring areas may result in less reliable spatial representations of pollution levels.
- 3. Using monthly AQI data may obscure short-term pollution fluctuations caused by specific events or daily variations. This reduces the ability to find very short-term pollution causes.
- 4. The study focuses on a specific set of pollutants, potentially overlooking others that contribute to air quality degradation.
- 5. While mentioned, the study might lack a detailed examination of the underlying causes of seasonal pollution variations. A deeper analysis of seasonal trends would be beneficial.

References:

- 1. Alam, M. (2004). Hyderabad, 1800-1900 A.D.. Mittal Publications.
- 2. Baklanov, A., Korsholm, U., Mahura, A., Petersen, C., & Gross, A. (2008). ENVIROHIRLAM: Online coupled modelling of urban meteorology and air pollution. Advances in Science and Research,

2(1), 41–46.

- 3. Boznar, M., Lesjak, M., & Mlakar, P. (1993). A neural network-based method for short term predictions of ambient SO2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment Part B Urban Atmosphere, 27(2), 221–230.
- 4. Charlot, S., Musy, M., & Tournoud, M. G. (2002). Geographic information system for environmental pollution studies. *Environmental Modelling & Software*, *17*(4), 303-311.
- 5. Chung, K. F., Zhang, J., & Zhong, N. (2011). Outdoor air pollution and respiratory health in Asia. Respirology, 16(7), 1023–1026.
- 6. Dünnebeil, G., Marjanović, M., & Žarko, I. P. (2017). Approaches to fuse fixed and mobile air quality sensors. May International symposium on environmental software systems (pp. 71–84).
- 7. Ghosh, S., & Guttikunda, S. K. (2020). Tracking air pollution and its impact on health in India. Environmental Research, 186, 109503.
- 8. Giustini, F., Ciotoli, G., Rinaldini, A., Ruggiero, L., & Voltaggio, M. (2019). Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. The Science of the Total Environment, 661, 449–464.
- 9. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press.
- 10. Goovaerts, P. (2018). Geostatistical analysis methods for estimation of environmental pollution: A review. *International Journal of Environmental Research and Public Health*, 15(6), 1214. https://doi.org/10.3390/ijerph15061214
- 11. Gurjar, B. R., Jain, A., Sharma, A., Kumar, P., Nagpure, A. S., & Lelieveld, J. (2016). Urban pressures on climate and air quality. Atmospheric Environment, 128, 270-281.
- 12. Gurjar, B. R., Jain, A., Sharma, A., Kumar, P., Porwal, A., Bagchi, T., ... & Ojha, C. S. P. (2016). Human health risks in megacities due to air pollution. Atmospheric Environment, 142, 422-434.
- 13. Guttikunda, S. K., & Jawahar, P. (2014). Air pollution in Hyderabad, India: a review of the sources, impacts, and mitigation options. Air Quality, Atmosphere & Health, 7(4), 417-430.
- 14. Hurley, P. J., Physick, W. L., & Luhar, A. K. (2005). TAPM: A practical approach to prognostic meteorological and air pollution modelling. Environmental Modelling & Software, 20(6), 737–752.
- 15. Hyderabad sees marginal improvement in air quality, accessed March 14, 2025, https://www.newindianexpress.com/states/telangana/2024/Mar/22/hyderabad-sees-marginalimprovement-in-air-quality
- 16. IJERPH Special Issue. (n.d.). Geostatistics in environmental pollution. *International Journal of Environmental Research and Public Health*. Retrieved March 20, 2025, from <u>https://www.mdpi.com/journal/ijerph/special_issues/geostatistics</u>
- 17. Kumari, M., Basistha, A., Bakimchandra, O., & Singh, C. K. (2016). Comparison of spatial interpolation methods for mapping rainfall in Indian Himalayas of Uttarakhand region. Geostatistical and geospatial approaches for the characterization of natural resources in the environment. Cham: Springer159–168.
- 18. Lelièvre, N., Beaurepaire, P., Mattrand, C., & Gayton, N. (2018). AK-MCSi: A Krigingbased method to deal with small failure probabilities and time-consuming models. Structural Safety, 73, 1–11.
- 19. Mallet, V., & Sportisse, B. (2008). Air quality modeling: From deterministic to stochastic approaches. Computers & Mathematics with Applications, 55(10), 2329–2337.
- 20. Nagendra, H., Sudhira, H. S., & Tewari, R. (2004). Monitoring urban sprawl in the cities of Hyderabad and Bangalore, India using remote sensing. Remote Sensing for Environmental Monitoring, GIS

Applications, and Geology III, 5546, 321-332.

- 21. Palomino, I., & Martin, F. (1995). A simple method for spatial interpolation of the wind in complex terrain. Journal of Applied Meteorology, 34(7), 1678–1693.
- 22. Pope, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742.
- 23. Stone, B., Jr. (2008). Urban sprawl and air quality in large US metropolitan areas. Journal of environmental management, 86(4), 688-698
- 24. Tompson, A. B. (2001). Interpolation of environmental data. Journal of Spatial Hydrology, 1(2), 1-29.
- 25. United Nations, Department of Economic and Social Affairs, Population Division. (2018). World urbanization prospects: The 2018 revision. United Nations Publications.
- 26. Wong, F. T., Sulistio, A., & Syamsoeyadi, H. (2018). Kriging-based timoshenko beam elements with the discrete shear gap technique. International Journal of Computational Methods, 15(07), 1850064.
- 27. World Health Organization. (2021). Air pollution. Retrieved from <u>https://www.who.int/news-room/fact-sheets/detail/air-pollution</u>
- 28. World Health Organization. (n.d.). Air pollution, from https://www.who.int/health-topics/air-pollution
- 29. Xu, H., Bechle, M. J., Wang, M., Szpiro, A. A., Vedal, S., Bai, Y., ... Marshall, J. D. (2019). National PM2. 5 and NO2 exposure models for China based on land use regression, satellite measurements, and universal kriging. The Science of the Total Environment, 655, 423–433.