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Abstract 

Neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease, and clinical depression 

present profound challenges in cognitive function, emotional regulation, and quality of life. Music therapy 

has long been recognized for its non-invasive therapeutic effects on memory recall, mood stabilization, 

and neuroplasticity. This paper presents HarmonAI, a novel framework that integrates brain signal analysis 

and deep generative models to compose real-time, personalized music tailored to the emotional and 

cognitive states of neurodegenerative patients. Utilizing pre-recorded neural datasets (EEG/fMRI), the 

system maps emotion-related brain activity to dynamic musical parameters via deep learning models, 

including convolutional and transformer-based architectures. The generated music is designed to respond 

adaptively to fluctuations in neural signals, creating a closed-loop therapeutic feedback system. 

Experimental results demonstrate promising accuracy in emotion recognition and subjective coherence of 

music output, with potential applications in clinical, home-based, and digital therapeutic environments. 

This interdisciplinary approach bridges AI, neuroscience, and music therapy to create a new frontier in 

affective neurotechnology. 
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1. INTRODUCTION 

Neurodegenerative diseases such as Alzheimer’s, Parkinson’s, and major depressive disorder affect 

millions worldwide, causing progressive deterioration in cognitive, emotional, and motor functions. These 

conditions severely diminish quality of life and pose long-term treatment challenges due to their chronic 

nature and complex neural underpinnings [1]. While pharmacological interventions remain central to 

disease management, their effectiveness in improving mood, cognitive retention, and emotional balance 

is often limited. This has led to growing interest in non-pharmacological and adjunct therapies, with music 

therapy emerging as a promising modality for enhancing neuroplasticity, emotional well-being, and 

memory retrieval [2][3]. 

Music is not only a cultural artifact but also a powerful neuromodulatory stimulus that engages multiple 

brain regions—including the auditory cortex, limbic system, and prefrontal areas—linked to emotional 

regulation and memory encoding [4]. In clinical contexts, structured music interventions have 
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demonstrated measurable outcomes in emotional regulation, anxiety reduction, and motor cueing in 

Parkinson’s patients [5]. However, traditional music therapy typically follows a one-size-fits-all approach, 

limiting personalization and dynamic adaptation to an individual's real-time mental state. 

Recent advances in artificial intelligence (AI), especially in affective computing, have created new 

opportunities for adaptive, personalized interventions. By integrating brain-computer interfaces (BCIs), 

deep learning models, and generative music algorithms, it is now feasible to design systems that respond 

to real-time neural and emotional cues [6]. This paper introduces HarmonAI, a personalized AI-powered 

music therapy framework that uses brain signals such as EEG to detect emotional states and generate 

music in real time, tailored to the patient’s unique neural patterns and therapeutic needs. 

The goal of this interdisciplinary research is to explore the synergy between AI, neuroscience, and music 

therapy for neurodegenerative patient care. HarmonAI aims not only to decode brain activity into 

meaningful emotional representations, but also to translate these into musically coherent, aesthetically 

pleasing, and therapeutically effective audio compositions. 

1.1 Objectives of the Study 

• To develop a framework for real-time music generation based on neural activity and emotional state. 

• To evaluate the effectiveness of emotion-conditioned music in therapeutic contexts. 

• To contribute a scalable, non-invasive system for cognitive and emotional support in 

neurodegenerative care. 

1.2 Paper Structure 

• Section 2: Reviews literature on music therapy, neural signal processing, affective computing, and 

generative AI music systems. 

• Section 3: Describes the datasets used, including neural signal sources and preprocessing techniques. 

• Section 4: Presents the architecture of the HarmonAI system, including emotion recognition and music 

generation modules. 

• Section 5: Details the experimental setup, implementation tools, and simulation environment. 

• Section 6: Evaluates system performance based on recognition accuracy and musical coherence. 

• Section 7: Presents case simulations across various neurodegenerative disorders. 

• Section 8: Discusses limitations, personalization challenges, and ethical implications. 

• Section 9: Outlines future directions for research and clinical deployment. 

• Section 10: Concludes the paper with final insights and contributions. 

 

2. Background and Related Work 

2.1 Music Therapy in Neurodegenerative Disorders 

Music therapy has evolved from a complementary wellness tool into a formalized clinical intervention 

with evidence-based outcomes across neurological and psychiatric domains. In the context of 

neurodegenerative disorders—such as Alzheimer’s, Parkinson’s, and frontotemporal dementia—music 

has been shown to bypass damaged cortical areas and access preserved neural pathways, particularly in 

the limbic system [2][4]. Structured interventions, including reminiscence-focused singing sessions and 

rhythmic entrainment techniques, are associated with improved autobiographical memory, verbal fluency, 

reduced anxiety, and enhanced social engagement [3][5]. 

In Parkinson’s disease, Rhythmic Auditory Stimulation (RAS) exploits the brain’s ability to synchronize 

movement with auditory beats. This technique has demonstrated statistically significant improvements in 
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gait velocity, stride length, and coordination through the activation of subcortical circuits, including the 

cerebello-thalamo-cortical loop [5]. However, such interventions are often delivered in static formats, 

failing to adapt to individual affective and neurophysiological states in real time. 

2.2 Neuroscience of Music and Emotion 

Music processing is inherently multimodal, integrating auditory input with affective, cognitive, and motor 

responses. Neuroimaging studies using fMRI and PET have consistently implicated regions such as the 

amygdala, hippocampus, ventromedial prefrontal cortex, and nucleus accumbens in musical affective 

experiences [4][7]. These regions form part of the mesolimbic dopamine system, critical for reward 

prediction and emotional salience. Importantly, in patients with neurodegenerative disorders, some of 

these regions remain relatively preserved in early stages, enabling music to evoke strong emotional 

responses even when verbal or visual stimuli fail. 

Moreover, emotional dimensions of music—mapped via arousal (intensity) and valence (pleasantness)—

can modulate EEG oscillatory activity, particularly in the alpha (8–12 Hz) and beta (13–30 Hz) bands. 

Frontal alpha asymmetry, for example, has been correlated with emotional valence, while beta activity 

increases with arousal [8]. These measurable signal changes offer a neurophysiological substrate for 

emotion-driven adaptive music generation. 

2.3 Brain Signals and Emotion Recognition 

Emotion recognition via EEG is a core component of affective computing and has seen rapid growth due 

to its non-invasive, cost-effective nature. Raw EEG signals, however, are noisy and require sophisticated 

preprocessing pipelines, including artifact rejection (e.g., ocular/muscle artifacts), band-pass filtering, and 

baseline normalization [8]. Emotion classification models commonly rely on features such as: 

• Power spectral density (PSD) in frontal and temporal lobes 

• Hjorth parameters and signal entropy 

• Frontal alpha asymmetry (FAA) 

• Event-related potentials (ERPs) such as P300 

Modern machine learning algorithms such as Support Vector Machines (SVMs), Random Forests, and 

deep architectures including 1D-CNNs and BiLSTMs have achieved promising accuracy levels in binary 

and multi-class emotion classification tasks [9]. 

Well-established datasets like DEAP [9], AMIGOS, and MAHNOB-HCI offer synchronized EEG, video, 

and physiological data with annotated arousal-valence labels. These datasets are instrumental in training 

and validating generalizable emotion detection models and will form the basis for HarmonAI’s neural-

emotional modeling. 

2.4 AI in Generative Music Composition 

Early algorithmic composition relied on rule-based systems and Markov models. However, the last decade 

has witnessed a transition to deep generative models capable of learning stylistic nuances and temporal 

coherence in music. RNN-based models such as LSTM networks have shown effectiveness in modeling 

temporal sequences in MIDI data [10]. More recently, Transformer architectures with self-attention 

mechanisms have enabled generation of long-term musical structures, polyphonic textures, and 

rhythmically consistent patterns [11]. 

State-of-the-art platforms such as: 

• Magenta’s MusicVAE and MusicTransformer 

• AIVA (Artificial Intelligence Virtual Artist) 

• OpenAI’s MuseNet and Jukebox 

https://www.ijfmr.com/
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...have demonstrated the ability to generate stylistically rich and genre-conditioned music. Despite their 

generative power, these systems lack integration with emotion-state feedback, particularly from neural 

data. 

2.5 Closing the Loop: Gaps in Personalized Music Therapy 

While EEG-based emotion recognition and AI-generated music are both active research areas, they rarely 

converge into a unified therapeutic system. Current BCI applications often focus on cursor control, 

prosthetic interfacing, or meditation feedback—but not on affect-regulated content generation. Similarly, 

music therapy interventions remain therapist-driven and rarely incorporate real-time brain activity or 

computational personalization. 

This paper addresses these gaps by proposing HarmonAI: a closed-loop, brain-responsive music 

generation system that fuses EEG-based emotion detection with deep generative AI models to produce 

music that adapts to the patient’s neuro-emotional state in real time. 

 

3.Data Sources and Preprocessing 

3.1 Overview 

The HarmonAI system requires high-quality datasets for both emotion recognition from neural signals and 

emotion-conditioned music generation. This section outlines publicly available datasets used for training 

and evaluation, along with preprocessing pipelines designed to extract meaningful features for each 

modality. Our goal is to leverage existing, ethically approved multimodal datasets to develop and test a 

closed-loop affective music generation framework. 

 

3.2 Neural Signal Datasets for Emotion Recognition 

3.2.1 DEAP Dataset [9] 

The DEAP dataset is a benchmark for EEG-based emotion recognition. It contains: 

● Data from 32 participants 

● Stimuli: 40 one-minute emotionally evocative music videos 

● Recordings: 32-channel EEG (512 Hz, downsampled to 128 Hz), GSR, EMG, EOG 

● Self-reported labels: Valence, arousal, dominance, and liking (1–9 scale) 

The EEG signals are preprocessed (artifact removal, filtering, ICA) and segmented in time-locked 

windows, making DEAP highly suitable for training emotion recognition models using both traditional 

ML and deep learning architectures. 

3.2.2 AMIGOS Dataset [12] 

AMIGOS enhances DEAP’s scope by including: 

● Data from 40 subjects 

● Long (14 min) and short (250 sec) video stimuli 

● EEG, ECG, GSR, facial expression, and personality traits 

● Individual and group settings 

This dataset allows modeling social-emotional modulation, an often-overlooked factor in music therapy. 

Its inclusion helps HarmonAI adapt to intra-subjective variability in group listening or therapy contexts. 

3.2.3 MAHNOB-HCI Dataset [13] 

This dataset contains: 

● EEG (32-channel), ECG, GSR, and synchronized facial videos from 27 subjects 

● Stimuli: 20 emotionally evocative videos (90–120 seconds) 
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● Emotion labels from self-assessment and external observers 

MAHNOB-HCI provides cross-validation data for robustness testing and enhances model generalization 

across subject populations and recording conditions. 

 

3.3 Music Datasets for Generative Modeling 

3.3.1 MAESTRO Dataset [14] 

The MAESTRO dataset comprises: 

● Over 200 hours of aligned audio and MIDI piano performances 

● High temporal resolution (millisecond alignment) 

● Diverse classical compositions from 2004–2011 

This makes MAESTRO ideal for training sequence-aware generative models, especially for tasks 

requiring temporal precision, such as emotion-to-melody mappings. 

3.3.2 Lakh MIDI Dataset (LMD) [15] 

The Lakh MIDI Dataset is a massive corpus containing: 

● Over 170,000 MIDI tracks, matched to songs from the Million Song Dataset 

● Broad coverage of genres: classical, pop, jazz, EDM, folk 

● Detailed metadata including composer, genre, tempo 

Its diversity enables HarmonAI to generalize stylistically and personalize music composition based on 

emotional context. 

 

3.4 Preprocessing Pipeline 

3.4.1 EEG Preprocessing 

Standard EEG signal processing is applied across datasets: 

● Band-pass filtering (0.5–45 Hz) to isolate cognitive-relevant bands 

● Independent Component Analysis (ICA) for ocular/muscle artifact rejection 

● Segmentation into non-overlapping epochs (e.g., 1–4 sec) 

● Normalization: z-score per channel or subject-specific baseline 

● Feature extraction: 

○ Time-domain: mean, variance, RMS, Hjorth parameters 

○ Frequency-domain: Power Spectral Density (PSD) in delta, theta, alpha, beta, gamma bands 

○ Nonlinear: entropy, fractal dimension, recurrence quantification 

○ Spatial: topographical features using electrode montages (e.g., frontal asymmetry) 

These features are passed to classifiers such as SVMs, Random Forests, or deep models like CNN-LSTM 

hybrids, which map EEG patterns to emotional states [8][16]. 

3.4.2 Emotion Annotation Models 

All datasets follow Russell’s Circumplex Model [17], with emotional labels mapped to valence-arousal 

quadrants. We adopt a four-class system: 

 

Quadrant Arousal Valence Examples 

Q1 High High Joy, Excitement 

Q2 High Low Anger, Anxiety 
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Q3 Low Low Sadness, Fatigue 

Q4 Low High Calm, Contentment 

These classes act as conditioning inputs for music generation. 

 

3.5 MIDI Tokenization and Representation 

To enable Transformer-based composition, MIDI files undergo event-based encoding: 

● Note-On/Off events 

● Velocity and pitch bins 

● Duration (beat-level) tokens 

● Bar and tempo encoding for musical structure awareness 

We use techniques such as REMI (REvamped MIDI) and CP-Transformer [18] for robust tokenization. 

This format is input to MusicTransformer or MuseNet-style models that are capable of generating coherent 

musical structures with long-range dependencies. 

3.6 Data Augmentation 

To improve model generalization and simulate real-world variability: 

● EEG augmentations include noise injection, time-warping, and channel dropout 

● MIDI augmentation includes: 

○ Transposition across keys 

○ Tempo modulation 

○ Style-mixing via latent interpolation (e.g., jazz/classical blend) 

These augmentations introduce synthetic diversity without changing underlying emotional intent. 

3.7 Ethical and Licensing Considerations 

All datasets are publicly released for non-commercial, academic research: 

● Subjects in EEG datasets gave informed consent 

● Data are anonymized and de-identified 

● Music datasets (MAESTRO, Lakh) are under permissive licenses (e.g., CC-BY-NC)Use of these 

datasets aligns with  research ethics guidelines and ensures reproducibility. 

 

4. System Architecture and Methodology 

4.1 Overview of HarmonAI Framework 

HarmonAI is a modular, closed-loop system designed to convert real-time brain signals into emotionally 

adaptive, personalized music. It comprises three major components: 

● (1) Neural Emotion Recognition Module (NERM) 

● (2) Affective Music Generator (AMG) 

● (3) Adaptive Feedback Engine (AFE) 

These components form a neuro-symbolic feedback loop, closing the gap between cognitive-emotional 

states and sonic therapy. 

4.2 End-to-End System Pipeline 

The system architecture follows these stages: 

1. Signal Acquisition: EEG signals are acquired via low- or high-density headsets (e.g., Emotiv, 

OpenBCI, BioSemi) using dry or wet electrodes. 
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2. Real-Time Signal Preprocessing: Involves noise filtering, ICA artifact removal, normalization, and 

segmentation. 

3. Emotion State Estimation (NERM): CNN-RNN architectures or graph neural networks infer user’s 

valence-arousal state from EEG features. 

4. Emotion-to-Music Mapping (AMG): Conditional generative models (e.g., Transformer-XL, 

MuseNet) generate MIDI compositions corresponding to the inferred emotion state. 

5. Music Synthesis & Playback: Generated MIDI is rendered into audio using virtual instruments or 

synthesis engines (e.g., FluidSynth, Magenta DDSP). 

6. Adaptive Feedback Engine (AFE): Analyzes ongoing EEG while music plays to track changes in 

user’s emotion and close the feedback loop, adapting music generation accordingly. 

 

4.3 Neural Emotion Recognition Module (NERM) 

4.3.1 Model Architecture 

Our emotion recognition model is a hybrid CNN-LSTM pipeline: 

● CNN layers extract spatial topographies from multi-channel EEG 

● LSTM layers model temporal evolution of emotional states 

● Output: 2D vector representing (valence, arousal) scores ∈ [–1, 1] 

Alternatively, Graph Neural Networks (GNNs) [19] are explored to model electrode connectivity (brain 

topology), where nodes = channels and edges = coherence or mutual information. 

4.3.2 Training and Optimization 

Loss function: 

● MSE for regression on continuous V-A scores 

● Cross-entropy if converted to emotion classes (quadrants) 

Optimization: 

● Adam optimizer (LR: 1e-4) 

● Early stopping and dropout for regularization 

Models are trained using cross-subject and leave-one-out validation schemes to ensure generalization 

across users [16]. 

 

4.4 Affective Music Generator (AMG) 

4.4.1 Conditioning Mechanism 

AMG uses valence-arousal pairs as conditioning input to steer musical characteristics like: 

● Tempo: maps to arousal (higher = faster tempo) 

● Key/mode: maps to valence (major = positive, minor = negative) 

● Dynamics & articulation: correspond to emotional energy [20] 

These parameters serve as control vectors in the Transformer’s latent space during generation. 

4.4.2 Generative Model Design 

We implement an Emotion-Conditioned Music Transformer, inspired by Music Transformer and CP-

Transformer[18]: 

● Input: REMI-style MIDI token sequences + (V, A) vector 

● Architecture: 12-layer Transformer-XL with relative position encoding 

● Output: MIDI sequence optimized for coherence, emotionality, and musicality 
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Training datasets: MAESTRO and Lakh MIDI (see Section 3). 

To prevent overfitting to dominant genres, we apply style transfer techniques using VAE-augmented 

embeddings [21]. 

4.4.3 Emotion-to-Music Mapping Validation 

Generated music is evaluated using: 

● Music Emotion Recognition (MER) models [22] 

● Human-rated emotion classification (mean concordance > 80%) 

● Quantitative metrics: tonal tension, key clarity, rhythmic variance 

This ensures that the musical output aligns with intended affective states. 

 

4.5 Adaptive Feedback Engine (AFE) 

4.5.1 Loop Closure and Emotion Tracking 

AFE uses sliding-window EEG tracking during music playback to measure how the user’s affective state 

changes. If divergence is detected (e.g., increased anxiety or flat response), it modifies: 

● Tempo 

● Timbre (instrument) 

● Musical density (note rate, complexity) 

This turns HarmonAI into a self-regulating, emotionally-aware system [23]. 

4.5.2 Reinforcement Learning Component 

A policy gradient reinforcement learner tunes music generation parameters based on real-time reward: 

● Positive reward: when emotional state shifts toward therapeutic target 

● Negative reward: when drift or stagnation occurs 

The RL agent (e.g., PPO or A2C) operates in latent music parameter space, learning from user-specific 

reward curvesover multiple sessions [24]. 

 

4.6 Personalization Strategies 

Given high inter-subject variability, personalization is key. Strategies include: 

● Transfer learning from generalized EEG-emotion models to individual profiles 

● Few-shot calibration using 2–5 minutes of pre-therapy baseline EEG 

● Clustering users into emotional response archetypes (e.g., reactive vs. reflective) for model warm-

starting [25] 

Music generation is also personalized via: 

● Style embedding selection (e.g., jazz, classical, ambient) 

● Rhythmic complexity scaling (based on cognitive load) 

● Instrumental choices (based on user preference or history) 

4.7 System Integration and Real-Time Considerations 

Real-time implementation is enabled via: 

● Low-latency EEG acquisition (OpenBCI, Muse 2) 

● On-device preprocessing via edge computing (Raspberry Pi, Jetson Nano) 

● Lightweight model serving using TensorFlow Lite or PyTorch Mobile 

● Audio rendering using WebAudio or RT MIDI-to-Audio synthesis 

Latency target: <500 ms from signal input to music output, preserving real-time responsiveness. 
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5. Evaluation and Results 

5.1 Overview 

The HarmonAI system is evaluated across three primary dimensions: 

● Accuracy of neural emotion recognition 

● Emotional alignment of generated music 

● Therapeutic efficacy in simulated or real-world settings 

We employ cross-validation on multimodal datasets, music emotion recognition (MER) models, and user-

centric testing protocols (e.g., surveys, psychophysiological responses) to verify both model performance 

and therapeutic outcomes. 

 

5.2 Evaluation of Neural Emotion Recognition (NERM) 

5.2.1 Metrics 

Key metrics for classification tasks: 

● Accuracy, F1-score, AUC-ROC, Cohen’s kappa 

For regression (valence/arousal): 

● RMSE, Pearson correlation (r), and Concordance Correlation Coefficient (CCC) [26] 

5.2.2 Baseline Comparison 

Our hybrid CNN-LSTM and GNN-based models were benchmarked against standard baselines: 

● SVM + handcrafted features 

● Shallow MLP classifiers 

● CNN-only and LSTM-only architectures 

Across datasets (DEAP, AMIGOS, MAHNOB), HarmonAI’s neural module achieved: 

● Valence/arousal prediction: 

○ DEAP: r = 0.68 (valence), 0.73 (arousal) 

○ AMIGOS: r = 0.65 / 0.70 

○ CCC ~0.60–0.67 across sets 

● Four-quadrant classification: Accuracy = 81.3%, F1-score = 0.79 

These results outperform traditional baselines by 8–15% in most scenarios [9][12][13][26]. 

 

5.3 Evaluation of Affective Music Generation 

5.3.1 Music Emotion Recognition (MER) Assessment 

Generated MIDI outputs were passed through pre-trained MER classifiers (e.g., [27], [28]) to check 

emotion congruencewith the input valence-arousal targets. 

● Mean classification accuracy (across genres): 86.7% 

● F1-score for valence-arousal quadrant matching: 0.82 

Specific musical traits such as tempo, mode, articulation, dynamics, and melodic contour were analyzed 

using the MIRtoolbox [29] and compared to ground-truth emotion-mapped musical features. 

5.3.2 Human Evaluation 

30 participants (musically and non-musically trained) rated randomly presented music samples generated 

for different emotion quadrants. 

● Rated on: Emotional accuracy (1–10), Naturalness (1–10), Pleasantness 

● Average emotional accuracy: 8.3/10 

● Inter-rater reliability (Cohen’s κ): 0.78 
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These results validate that HarmonAI’s generated compositions align with human-perceived affective 

intent. 

 

5.4 Closed-Loop Therapeutic Simulation 

5.4.1 Experimental Design 

We simulated a 30-minute closed-loop music therapy session: 

● Participants wore EEG headsets and were exposed to controlled stress-inducing stimuli (e.g., Stroop 

task, negative imagery) 

● HarmonAI detected emotional shifts and responded with real-time adaptive music 

● Measured: EEG changes, HRV (heart rate variability), and self-reported mood via PANAS scale [30] 

5.4.2 Results 

● Valence increased by ~24% on average post-adaptive session 

● Arousal was regulated downward (high → moderate) in anxiety-inducing cases 

● HRV increased, indicating parasympathetic recovery 

● PANAS mood shift: +19.4% in positive affect, –15.1% in negative affect 

These outcomes suggest HarmonAI can effectively function as a real-time emotional co-regulation tool 

[31]. 

 

5.5 Ablation Studies 

We conducted ablation experiments to determine each module’s contribution: 

● Removing EEG feedback loop → 31% drop in therapeutic impact (no adaptive correction) 

● Switching from Transformer to LSTM generator → 18% drop in perceived musical emotionality 

● No personalization → 25% reduction in emotional congruence scores 

These results affirm the importance of personalization and real-time feedback in music-based affective 

regulation [24][25]. 

5.6 Generalizability Across Users and Sessions 

We tested across: 

● Age groups (18–65) 

● Gender 

● Musical backgrounds 

● Cognitive/emotional profiles (self-reported mood disorders vs. controls) 

Performance metrics remained stable across cohorts: 

● Valence/arousal prediction deviation: < ±7% 

● Music emotion classification robustness: < 10% variation 

This suggests HarmonAI is scalable and resilient to population diversity [32]. 

5.7 Visualization of Results 

● Confusion matrices for emotion quadrant classification 

● Heatmaps of EEG-based feature importance (e.g., frontal alpha asymmetry) 

● t-SNE embeddings of generated music clips by emotional cluster 

● Time-series plots of EEG + emotional trajectories during therapy 

Visual analytics help clinicians and researchers interpret the system’s decisions and effects. 
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6. Discussion and Future Directions 

6.1 Interpretations of Results 

The results presented in Section 5 affirm HarmonAI’s capacity to function as a real-time, emotionally 

adaptive therapeutic agent. Notably: 

● Emotion recognition models demonstrated robust cross-subject generalization, validating the fusion 

of CNN-GNN architectures. 

● Music generation modules produced affect-aligned compositions that were both emotionally 

intelligible and aesthetically pleasing to users. 

● Adaptive feedback loops significantly enhanced therapeutic outcomes, supporting the notion that 

closed-loop intervention systems can outperform static music therapy approaches [24][31]. 

The integration of brain-derived affective states with computational creativity closes the perception-action 

loop in therapy, creating a neuroadaptive media system [33]. 

 

6.2 Multidisciplinary Significance 

6.2.1 AI & Affective Computing 

HarmonAI exemplifies a unique fusion of affective computing and generative AI, addressing critical gaps 

in: 

● Emotion-aware content generation 

● Human-centered machine learning 

● Neuroadaptive interfaces 

It also challenges the conventional limits of recommender systems, pushing toward affect-synchronous 

content design[34]. 

6.2.2 Neuroscience & Digital Therapeutics 

From a neuroscience lens, HarmonAI supports the emerging paradigm of music as medicine, aligning with 

findings that emotionally congruent music can modulate default-mode network activity, prefrontal 

asymmetry, and limbic responses [20][31][35]. 

In the growing field of digital therapeutics (DTx), HarmonAI stands as a prototype of closed-loop, data-

driven neuromodulation—potentially translatable into regulated clinical tools for MCI, Alzheimer's, 

Parkinson’s, and mood disorders [36]. 

6.2.3 Music Therapy 

While traditional music therapy often relies on manual curation and therapist-led sessions, HarmonAI 

offers: 

● Scalable, AI-driven personalization 

● Real-time reactivity to fluctuating patient states 

● Reduced therapist workload, enabling hybrid care models [37] 

This does not replace human therapists but augments their capabilities through intelligent tools. 

 

6.3 Limitations 

Despite its promising architecture and performance, HarmonAI has several limitations: 

6.3.1 EEG Signal Variability 

● EEG is highly sensitive to artifacts (e.g., motion, muscle, eye blinks). 

● Inter-session and inter-subject variability remains a challenge, though mitigated via transfer learning 

and personalization [19][26]. 
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6.3.2 Dataset Limitations 

● Datasets like DEAP and AMIGOS are lab-constrained, often lacking ecological validity. 

● Real-world deployment would require in-the-wild EEG collection, which poses technical and 

regulatory hurdles [38]. 

6.3.3 Musical Generalization 

● Music generation models, while expressive, are influenced by training biases (e.g., Western tonal 

structures). 

● Expanding to cross-cultural musical grammars remains an open research direction. 

6.3.4 Therapeutic Certification 

● HarmonAI, as a digital intervention, has not yet undergone randomized controlled trials (RCTs). 

● Clinical validation is essential before integration into medical practice or therapeutic protocols. 

 

6.4 Ethical and Societal Considerations 

6.4.1 Neuroethics and Consent 

Real-time brain signal monitoring raises concerns about privacy, consent, and agency. Informed consent 

protocols must: 

● Clarify how brain data is used, stored, and interpreted 

● Offer opt-out and deletion pathways for personal data 

Additionally, interpretability of AI decisions becomes critical when applied in therapeutic or affective 

contexts [39]. 

6.4.2 Algorithmic Bias and Representation 

Emotion recognition systems may reflect demographic, cultural, or gender biases due to: 

● Skewed datasets 

● Underrepresentation in training corpora 

To address this, future work must include diverse and inclusive datasets, fair evaluation protocols, and 

bias auditingpractices [40]. 

 

6.5 Future Directions 

6.5.1 Clinical Trials and Longitudinal Studies 

Next steps include: 

● Conducting pilot studies in clinical settings (e.g., memory care units, neurology clinics) 

● Longitudinal assessment to evaluate sustained emotional and cognitive benefits 

● Exploring complementary biomarkers like HRV, GSR, and facial expression to enrich feedback loops 

[30][41] 

6.5.2 Multimodal Expansion 

Future systems may incorporate: 

● NIRS or fMRI data for deeper affective modeling 

● Voice tone, facial micro-expressions, or textual sentiment as auxiliary channels 

● Multisensory outputs, such as haptics or visual art, expanding the therapeutic envelope beyond sound 

[42] 

6.5.3 On-Device Optimization 

To enable wearable and mobile deployments, future work will emphasize: 

● Model pruning, quantization, and distillation 
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● Edge inference engines (e.g., TensorFlow Lite, ONNX) 

● Energy-aware scheduling for continuous real-time processing [43] 

6.5.4 Therapist-in-the-Loop Systems 

A hybrid design is envisioned where music therapists can steer or override AI decisions via: 

● Real-time annotation tools 

● Music intervention customization interfaces 

● Patient progression dashboards 

This aligns with the philosophy of collaborative AI in therapeutic environments [44]. 

 

7. Conclusion and Final Remarks 

7.1 Summary of Contributions 

This work presents HarmonAI, a novel system that synthesizes advances in affective computing, 

neuroscience, and music therapy to deliver personalized, real-time music therapy for individuals with 

neurodegenerative and affective disorders. 

The core contributions of this paper include: 

● Multimodal Affective State Recognition: A hybrid EEG-based system combining CNNs and GNNs to 

infer user affective states, robust across sessions and subjects, even in noisy environments 

[19][26][33]. 

● Personalized Generative Music Engine: A controllable AI composer aligned with the Russell 

Circumplex Model of emotion, capable of translating neural and contextual cues into emotionally 

synchronized music [24][31]. 

● Closed-Loop Neuroadaptive Feedback System: An architecture that continuously adjusts musical 

parameters based on emotional drift, enabling emotion regulation rather than static entertainment 

[20][34]. 

● Cross-validated Performance Evaluation: Extensive testing on publicly available datasets (DEAP, 

AMIGOS, MAHNOB-HCI) using standard metrics (F1-score, RMSE, arousal/valence concordance) 

to ensure reproducibility and generalizability [30][38]. 

● Socio-ethical and Deployment Roadmap: A forward-looking exploration of HarmonAI’s implications 

in digital therapeutics, neuroethics, and affect-sensitive human-computer interaction [36][39][40]. 

Together, these components frame HarmonAI as a multidisciplinary therapeutic system capable of 

advancing the future of emotion-aware AI in healthcare. 

 

7.2 Broader Implications 

7.2.1 Toward Emotionally Adaptive Therapeutics 

HarmonAI embodies a shift from static, protocol-driven music therapy toward personalized, intelligent, 

and emotionally adaptive digital interventions. Unlike traditional therapeutic tools that rely on fixed 

stimuli, HarmonAI is capable of: 

● Reacting to fluctuating neurophysiological signals 

● Tailoring its outputs to user-specific emotional profiles 

● Operating autonomously while retaining the option for therapist-in-the-loop configuration 

This approach has vast implications for personalized medicine, particularly in neurology, psychiatry, and 

geriatric care. As emotion is a key modulator of cognition, memory, and neuroplasticity, emotionally 

aligned music may influence prefrontal-limbic connectivity, stress regulation, and mood stability in disor- 
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ders such as Alzheimer’s, Parkinson’s, and depression [20][31][35]. 

7.2.2 AI and Computational Empathy 

More than a tool, HarmonAI is a computational instantiation of empathy—a machine that listens, 

interprets, and responds emotionally. In doing so, it reframes AI not just as a decision engine, but as an 

affective co-regulator, capable of: 

● Assisting clinicians in tracking emotional baselines 

● Providing on-demand therapeutic stimulation 

● Reinforcing emotional autonomy and agency in patients 

This aligns with emerging frameworks of empathetic AI, which prioritize emotion-aware and ethically-

aligned human-AI interaction paradigms [33][45]. 

 

7.3 Limitations and Ethical Stewardship 

Despite its potential, HarmonAI carries technical and ethical limitations that must be addressed prior to 

clinical translation: 

7.3.1 Technical Limitations 

● Signal Noise and Variability: EEG signals are prone to motion artifacts and environmental noise. 

While deep learning improves robustness, real-world deployments require better dry electrodes and 

artifact rejection techniques [26][38]. 

● Cultural Musical Diversity: The generative model is currently trained on Western tonal systems. Its 

therapeutic impact may differ across cultural contexts, necessitating cross-cultural music datasets and 

localized emotional encoding models [31]. 

● Lack of Clinical Trials: HarmonAI has not yet undergone randomized controlled trials (RCTs), which 

are essential to validate its efficacy, safety, and integration into clinical care pathways [36]. 

7.3.2 Ethical and Societal Challenges 

7.3.1 Technical Limitations 

Despite encouraging outcomes, HarmonAI faces technical constraints: 

● EEG data is inherently noisy and non-stationary, and while GNN/CNN-based architectures improve 

generalization, cross-subject variance remains a barrier [26][38]. 

● The system is currently trained on laboratory-constrained datasets that may not fully capture real-

world emotional dynamics in patients. 

● Cultural and demographic biases in music preference and emotional expressivity are not yet fully 

addressed in the generative models [31][40]. 

7.3.2 Clinical and Deployment Barriers 

● HarmonAI has not yet undergone formal clinical validation (e.g., RCTs), and thus cannot be used as a 

certified digital therapeutic [36]. 

● Integration with clinical workflows—especially in resource-constrained or elder-care environments—

requires infrastructure, training, and buy-in from caregivers. 

● Continuous deployment of emotion-sensing systems requires battery-efficient on-device inference, 

privacy safeguards, and psychological transparency to ensure user trust [43]. 

7.3.3 Ethical and Human Rights Considerations 

Given its ability to interpret and influence emotional states, HarmonAI must adhere to strict neuroethical 

standards: 

● Informed consent protocols must ensure comprehension among cognitively impaired users. 

https://www.ijfmr.com/
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● Data privacy mechanisms must protect intimate neural and emotional data. 

● Algorithmic transparency must allow patients and caregivers to understand why specific music was 

generated in response to internal states [39][46]. 

Long-term, HarmonAI may interact with the autonomy and emotional identity of users. This demands 

frameworks that preserve the agency, dignity, and psychological well-being of vulnerable populations. 

 

7.4 Closing Vision 

HarmonAI marks a paradigm shift in how we understand and design AI systems—not merely as tools of 

automation, but as interactive agents of co-regulation, creativity, and care. 

We envision a future where: 

● Neuroadaptive systems are embedded in everyday environments, providing continuous emotional 

support to patients, caregivers, and even healthy users seeking wellness optimization. 

● Music, historically a cultural artifact of healing, becomes a programmable, real-time, data-driven 

therapeutic medium—infused with computational empathy and personalized neuroscience. 

● AI systems evolve beyond cold logic into emotionally intelligent companions, enhancing mental 

health, cognitive recovery, and quality of life with human-aligned intent. 

The future of human-AI interaction lies not in domination, but in resonance—systems that adapt to, 

harmonize with, and elevate our most human experiences. In this vision, HarmonAI stands not just as an 

artifact of innovation, but as a bridge between mind and music, machine and meaning. 
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