International Journal For Multidisciplinary Research
E-ISSN: 2582-2160
•
Impact Factor: 9.24
A Widely Indexed Open Access Peer Reviewed Multidisciplinary Bi-monthly Scholarly International Journal
Home
Research Paper
Submit Research Paper
Publication Guidelines
Publication Charges
Upload Documents
Track Status / Pay Fees / Download Publication Certi.
Editors & Reviewers
View All
Join as a Reviewer
Reviewer Referral Program
Get Membership Certificate
Current Issue
Publication Archive
Conference
Publishing Conf. with IJFMR
Upcoming Conference(s) ↓
WSMCDD-2025
GSMCDD-2025
Conferences Published ↓
RBS:RH-COVID-19 (2023)
ICMRS'23
PIPRDA-2023
Contact Us
Plagiarism is checked by the leading plagiarism checker
Call for Paper
Volume 6 Issue 6
November-December 2024
Indexing Partners
Application of Image Analytics for Tree Enumeration for Diversion of Forest Land
Author(s) | Devidas Dukale, Sumit Agale, Swaroop Kaunge, Pushpak Nikam |
---|---|
Country | India |
Abstract | Accurate tree enumeration is essential for responsible forest land diversion in development projects. Conventional manual surveys are slow, costly, and prone to errors. This paper introduces a cutting-edge image analytics solution that leverages satellite imagery and aerial photos to automate tree counting. The primary objective is to develop a robust system that identifies and categorizes trees by crown size, and environmental conditions. Advanced computer vision algorithms are integrated with machine learning models to analyze the imagery. Rigorous validation processes, including comparisons with ground-truth data from manual surveys, ensure high accuracy and reliability. The results are impressive. This solution significantly accelerates tree enumeration, eliminating resource-intensive manual efforts. It consistently demonstrates precision with minimal false positives and negatives. Moreover, it categorizes trees efficiently by species, offering a comprehensive view of the forested area. This project significance lies in its contribution to responsible and sustainable land development practices. By automating tree enumeration, it equips stakeholders with timely, precise data for informed decisions about land usage, conservation, and environmental impact assessments. The solution strikes a balance between development and ecological preservation, optimizing resource allocation while minimizing environmental impact in forested regions. In conclusion, this innovative image analytics solution revolutionizes forest land diversion, enabling efficient and ecologically conscious decision-making. It addresses the critical need for accurate tree enumeration in the face of developmental challenges, fostering responsible land use and environmental stewardship. |
Keywords | Machine Learning, Deep Learning, UAV imagery, Tree Enumeration |
Field | Engineering |
Published In | Volume 6, Issue 1, January-February 2024 |
Published On | 2024-02-10 |
Cite This | Application of Image Analytics for Tree Enumeration for Diversion of Forest Land - Devidas Dukale, Sumit Agale, Swaroop Kaunge, Pushpak Nikam - IJFMR Volume 6, Issue 1, January-February 2024. DOI 10.36948/ijfmr.2024.v06i01.11112 |
DOI | https://doi.org/10.36948/ijfmr.2024.v06i01.11112 |
Short DOI | https://doi.org/gthqr6 |
Share this
E-ISSN 2582-2160
doi
CrossRef DOI is assigned to each research paper published in our journal.
IJFMR DOI prefix is
10.36948/ijfmr
Downloads
All research papers published on this website are licensed under Creative Commons Attribution-ShareAlike 4.0 International License, and all rights belong to their respective authors/researchers.