International Journal For Multidisciplinary Research
E-ISSN: 2582-2160
•
Impact Factor: 9.24
A Widely Indexed Open Access Peer Reviewed Multidisciplinary Bi-monthly Scholarly International Journal
Home
Research Paper
Submit Research Paper
Publication Guidelines
Publication Charges
Upload Documents
Track Status / Pay Fees / Download Publication Certi.
Editors & Reviewers
View All
Join as a Reviewer
Reviewer Referral Program
Get Membership Certificate
Current Issue
Publication Archive
Conference
Publishing Conf. with IJFMR
Upcoming Conference(s) ↓
WSMCDD-2025
GSMCDD-2025
Conferences Published ↓
RBS:RH-COVID-19 (2023)
ICMRS'23
PIPRDA-2023
Contact Us
Plagiarism is checked by the leading plagiarism checker
Call for Paper
Volume 6 Issue 6
November-December 2024
Indexing Partners
Detection of Traffic Control Devices during Bridge Construction Projects Using Deep Learning
Author(s) | M. Parvathi |
---|---|
Country | India |
Abstract | Recent days during the time of road construction so many accidents may occur due to the objects in the construction area cannot capture during travel. Some method must be implemented to classify and locate instances in the image. In deep learning area it extends its application to this field for object detection. Even though a method is identified it has risk factors such as real-time detection, changeable weather, and complex lighting conditions. In this paper we are discussing the algorithm used for detection and a next version of that algorithm to detect the object with more precision. And also the number frames capture during driving is also more than other algorithm. Here we discussed about YOLO algorithm, and which is the best algorithm that applies different aspects such as key generic object detection frameworks, categorized object detection applications in traffic scenario, evaluation metrics, and classified datasets are included. The idea in YOLO v7 is to avoid that there is an identity connection when a convolutional layer with residual or concatenation is replaced by re-parameterized convolution. |
Keywords | YOLO, evaluation metrics, deep learning, convolution |
Field | Computer Applications |
Published In | Volume 6, Issue 1, January-February 2024 |
Published On | 2024-01-30 |
Cite This | Detection of Traffic Control Devices during Bridge Construction Projects Using Deep Learning - M. Parvathi - IJFMR Volume 6, Issue 1, January-February 2024. DOI 10.36948/ijfmr.2024.v06i01.11878 |
DOI | https://doi.org/10.36948/ijfmr.2024.v06i01.11878 |
Short DOI | https://doi.org/gtghn3 |
Share this
E-ISSN 2582-2160
doi
CrossRef DOI is assigned to each research paper published in our journal.
IJFMR DOI prefix is
10.36948/ijfmr
Downloads
All research papers published on this website are licensed under Creative Commons Attribution-ShareAlike 4.0 International License, and all rights belong to their respective authors/researchers.