International Journal For Multidisciplinary Research
E-ISSN: 2582-2160
•
Impact Factor: 9.24
A Widely Indexed Open Access Peer Reviewed Multidisciplinary Bi-monthly Scholarly International Journal
Home
Research Paper
Submit Research Paper
Publication Guidelines
Publication Charges
Upload Documents
Track Status / Pay Fees / Download Publication Certi.
Editors & Reviewers
View All
Join as a Reviewer
Reviewer Referral Program
Get Membership Certificate
Current Issue
Publication Archive
Conference
Publishing Conf. with IJFMR
Upcoming Conference(s) ↓
WSMCDD-2025
GSMCDD-2025
Conferences Published ↓
RBS:RH-COVID-19 (2023)
ICMRS'23
PIPRDA-2023
Contact Us
Plagiarism is checked by the leading plagiarism checker
Call for Paper
Volume 6 Issue 6
November-December 2024
Indexing Partners
Popularity-based and Collaborative Filtering Based Restaurant Recommender System
Author(s) | Nishant Wale |
---|---|
Country | India |
Abstract | The creation of a Popularity-based and Collaborative Filtering Based Restaurant Recommendation System is the main focus of this project, which is an important application in the fields of recommendation systems and machine learning. The system uses the different python libraries like scikit-learn, pandas, NumPy, Linear Regression, Hashlib and Matplotlib as well as technologies like Python and the Flask Framework, to recommend the restaurants to the users based on the ratings out of 5 and their tastes. With features including user registration, login, restaurant browsing, and recommendation, the suggested system is a user-centric program. The system offers a smooth user experience by combining backend Python frameworks with frontend technologies like HTML, CSS, and Bootstrap. A thorough analysis of the literature made it clear that recommendation systems are essential for improving user pleasure and experience across a range of industries. But my cutting-edge restaurant suggestion system offers a fresh approach. My solution combines cutting-edge machine learning algorithms with intelligent analysis of customer preferences to deliver customized restaurant recommendations. My system uses collaborative and popularity-based filtering algorithms to make sure that users receive recommendations based on their interests and preferences. Through the integration of data from many sources, such as restaurant attributes and user ratings, My system generates precise and pertinent recommendations that boost user engagement and pleasure. Furthermore, My platform offers a user-friendly experience with little additional infrastructure requirements by seamlessly integrating with current websites and applications. My goal is to revolutionize the restaurant discovery process and improve the eating experience for people globally by promoting the widespread adoption of My technology through smart relationships with industry players. |
Keywords | Restaurant Recommendation, Machine Learning, Popularity-Based Filtering, Collaborative Filtering, User Preferences, Personalization, Integration, User Engagement, Linear Regression. |
Field | Engineering |
Published In | Volume 6, Issue 2, March-April 2024 |
Published On | 2024-04-01 |
Cite This | Popularity-based and Collaborative Filtering Based Restaurant Recommender System - Nishant Wale - IJFMR Volume 6, Issue 2, March-April 2024. DOI 10.36948/ijfmr.2024.v06i02.15985 |
DOI | https://doi.org/10.36948/ijfmr.2024.v06i02.15985 |
Short DOI | https://doi.org/gtpw8q |
Share this
E-ISSN 2582-2160
doi
CrossRef DOI is assigned to each research paper published in our journal.
IJFMR DOI prefix is
10.36948/ijfmr
Downloads
All research papers published on this website are licensed under Creative Commons Attribution-ShareAlike 4.0 International License, and all rights belong to their respective authors/researchers.