International Journal For Multidisciplinary Research
E-ISSN: 2582-2160
•
Impact Factor: 9.24
A Widely Indexed Open Access Peer Reviewed Multidisciplinary Bi-monthly Scholarly International Journal
Home
Research Paper
Submit Research Paper
Publication Guidelines
Publication Charges
Upload Documents
Track Status / Pay Fees / Download Publication Certi.
Editors & Reviewers
View All
Join as a Reviewer
Reviewer Referral Program
Get Membership Certificate
Current Issue
Publication Archive
Conference
Publishing Conf. with IJFMR
Upcoming Conference(s) ↓
WSMCDD-2025
GSMCDD-2025
Conferences Published ↓
RBS:RH-COVID-19 (2023)
ICMRS'23
PIPRDA-2023
Contact Us
Plagiarism is checked by the leading plagiarism checker
Call for Paper
Volume 6 Issue 6
November-December 2024
Indexing Partners
Microbial Biofilms: Harnessing the Power of Complex Microbial Communities for Industrial Applications
Author(s) | Vijayalaxmi Naganuri, Pratiksha Jadhav, Lingayya Hiremath |
---|---|
Country | india |
Abstract | Microbial biofilms are complex microbial colonies that attach to surfaces and grow inside an extracellular polymeric substance (EPS) matrix. These biofilms have great promise for industrial applications and play crucial roles in several natural and artificial systems. The use of microbial biofilms in industrial settings is examined in this abstract, which also places an emphasis on techniques to improve biofilm development and performance through surface modification and quorum sensing manipulation. Due to their versatility, durability, and cooperative behaviour, biofilms have attracted interest and are useful in a variety of industrial industries. They work in the food business, bioenergy generation, agriculture industry and biosensor, among other fields.Biofilms are more effective in industrial processes because of their intricate interactions, which also lead to higher metabolic capacities, increased stress tolerance, and improved retention of immobilised cells. The production and performance of microbial biofilms need to be improved in order to fully realise their potential. Techniques for surface modification provide a promising way to customise the characteristics of biofilms. It is possible to modify the topography, hydrophobicity, and charge of the substrate to affect how quickly biofilms form after initial microbial attachment. Additionally, functionalization and coatings based on nanomaterials provide novel approaches to improve biofilm adhesion, cohesiveness, and stability. The method of cell-to-cell communication known as quorum sensing (QS) directs the development and behaviour of biofilms. Controlling QS pathways enables fine-grained regulation of biofilm growth. QS may be controlled via genetic engineering and small molecule therapy, which affects the phenotypic and architecture of biofilms. With the use of these techniques, biofilms may be designed with the required properties, including greater thickness, higher resistance to shear pressures, and increased production of desirable chemicals. In conclusion, because of their cooperative nature and adaptable functioning, microbial biofilms show enormous promise for industrial applications. The importance of surface modification and quorum sensing modulation as tactics to improve biofilm performance is highlighted in this abstract. As science advances, a fuller comprehension of the ecology of biofilms, interspecies interactions, and synthetic biology technologies will make it easier to create biofilms that are specifically suited to a given industrial purpose. Understanding the complex principles underlying biofilm production and behaviour will allow for the full realisation of the promise for sustainable and effective industrial processes, ushering in a new age of biofilm-based technology. |
Published In | Volume 5, Issue 4, July-August 2023 |
Published On | 2023-08-22 |
Cite This | Microbial Biofilms: Harnessing the Power of Complex Microbial Communities for Industrial Applications - Vijayalaxmi Naganuri, Pratiksha Jadhav, Lingayya Hiremath - IJFMR Volume 5, Issue 4, July-August 2023. DOI 10.36948/ijfmr.2023.v05i04.5618 |
DOI | https://doi.org/10.36948/ijfmr.2023.v05i04.5618 |
Short DOI | https://doi.org/gsm4xg |
Share this
E-ISSN 2582-2160
doi
CrossRef DOI is assigned to each research paper published in our journal.
IJFMR DOI prefix is
10.36948/ijfmr
Downloads
All research papers published on this website are licensed under Creative Commons Attribution-ShareAlike 4.0 International License, and all rights belong to their respective authors/researchers.